【题目】探究应用:
(1)计算:___________;______________.
(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母的等式表示该公式为:_______________.
(3)下列各式能用第(2)题的公式计算的是( )
A. B.
C. D.
科目:初中数学 来源: 题型:
【题目】节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.
(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?
(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:
(1)求点A的坐标与直线l的表达式;
(2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;
②求点M运动的过程中线段CD长度的最小值;
(3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,有一个内角是直角的三角形是直角三角形,其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家还发现:在一个直角三角形中,两条直角边长的平方和等于斜边长的平方。即如果一个直角三角形的两条直角边长度分别是和,斜边长度是,那么。
(1)直接填空:如图①,若a=3,b=4,则c= ;若,,则直角三角形的面积是 ______ 。
(2)观察图②,其中两个相同的直角三角形边AE、EB在一条直线上,请利用几何图形的之间的面积关系,试说明。
(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8,BC=10,利用上面的结论求EF的长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“利用直角三角形作矩形”尺规作图的过程.
已知:如图1,在Rt△ABC中,∠ABC=90°.
求作:矩形ABCD.
小明的作法如下:
如图2,(1)分别以点A、C为圆心,大于AC同样长为半径作弧,两弧交于点E、F;
(2)作直线EF,直线EF交AC于点O;
(3)作射线BO,在BO上截取OD,使得OD=OB;
(4)连接AD,CD.
∴四边形ABCD就是所求作的矩形.
老师说,“小明的作法正确.”
请回答,小明作图的依据是:__________________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形 ABCD 中,A(﹣1,0)、B(0,﹣2),顶点 C、D 在双曲线 y=(x>0)上,边 AD 交 y 轴于点 E,若点 E 恰好是 AD 的中点,则 k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数与x轴交于E(-2,0),与y轴交于点A.与x轴交于B(2,0),与y轴交于点D(0,-4).它们的图象如图所示,请依据图象回答以下问题:
(1)a=
(2)确定的函数关系式
(3)求△ABC的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com