【题目】兴华商店准备购进甲、乙两种书包出售,每个甲种书包的进价比每个乙种书包的进价多20元,购进3个甲种书包的费用和购进4个乙种书包的费用相等,现计划购进两种书包共100个,其中乙种书包不少于35个.
(1)甲种书包进价为__________元/个,乙种书包进价为__________元/个;
(2)若甲种书包每个售价120元,乙种书包每个售价90元,且购进这100个书包的费用不低于7200元,如果这100个书包都可售完,那么兴华商店如何进货才能获得最大利润?最大利润是多少?
【答案】(1)80,60;(2)最大利润为3650,此时应进65个甲书包,35个乙书包
【解析】
(1)设乙书包的进价x元/个,则甲书包的进价为(x+20)元/个,根据题意列方程即可解答;
(2)根据题意列出不等式组,求出m的取值范围,再列出w的表达式讨论即可.
(1)设乙书包的进价为x元/个,则甲书包的进价为(x+20)元/个,根据题意得:3(x+20)=4x,解得x=60,
即甲书包进价为80元/个,乙书包进价为60元/个;
(2)设计划购买m个甲书包,则购买(100-m)个乙书包,根据题意得:
解得:60≤m≤65,
设总利润为w元,
则w=(120-80)m+(90-60)(100-m)=10m+3000,
所以当m=65时,w有最大值,最大值为3650,
此时应进65个甲书包,35个乙书包.
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣2x+4与x轴、y轴分别交于A、B两点,P是直线AB上的一个动点,点C的坐标为(﹣4,0),PC交y轴点于D,O是原点.
(1)求△AOB的面积;
(2)线段AB上存在一点P,使△DOC≌△AOB,求此时点P的坐标;
(3)直线AB上存在一点P,使以P、C、O为顶点的三角形面积与△AOB面积相等,求出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师给学生出了一道题:
求(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)的值,其中a=,b=﹣1,同学们看了题目后发表不同的看法.小张说:条件b=﹣1是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”
(1)你认为他们谁说的有道理?为什么?
(2)若xm等于本題计算的结果,试求x2m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.
(1)求证:△ABD≌△ACE;
(2)求证:四边形ABFE是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
①画出△ABC向左平移5个单位长度后得到的△A1B1C1;
②请画出△ABC关于原点对称的△A2B2C2 , 并写出点A2、B2、C2坐标;
③请画出△ABC绕原点O逆时针旋转90°后△A3B3C3 , 并写出点A3、B3、C3坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个以点O为圆心的同心圆,
图1 图2
(1)如图1,大圆的弦AB交小圆于C,D两点,试判断AC与BD的数量关系,并说明理由.
(2)如图2,将大圆的弦AB向下平移使其为小圆的切线,切点为C,证明:AC=BC.
(3)在(2)的基础上,已知AB=20cm,直接写出圆环的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9
(1)求证:△COD∽△CBE;
(2)求半圆O的半径 的长
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com