【题目】如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .![]()
科目:初中数学 来源: 题型:
【题目】阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=
计算.解答下列问题:
![]()
(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;
(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.
(3)已知点A(5,5),B(-4,7),点P在x轴上,且要使PA+PB的和最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为( )![]()
A.2
<r< ![]()
B.
<r≤3 ![]()
C.
<r<5
D.5<r< ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F之间满足的数量关系是( )
A. ∠E=∠FB. ∠E+∠F=180°
C. 3∠E+∠F=360°D. 2∠E-∠F=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,点D是AB边中点,点E是BC边上一点,将△ADE沿DE折叠,得到△FDE,使△FDE与△BDE重叠部分的面积是△AEB面积的
,若AC=3,BC=6,则线段BE的长为__________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线
与x轴、y轴分别相交于A、B两点,与直线
交于点C,且点C的横坐标为1.
(1)求b的值;
(2)点
,
在直线
上,若
,则
__________
.
(3)若动点P在线段OC上(点P不与点C重合),连接PA,PB,设点P的横坐标为m,△PAB的面积为S,求S关于m的函数关系式(不要求写出自变量m的取值范围).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】兴华商店准备购进甲、乙两种书包出售,每个甲种书包的进价比每个乙种书包的进价多20元,购进3个甲种书包的费用和购进4个乙种书包的费用相等,现计划购进两种书包共100个,其中乙种书包不少于35个.
(1)甲种书包进价为__________元/个,乙种书包进价为__________元/个;
(2)若甲种书包每个售价120元,乙种书包每个售价90元,且购进这100个书包的费用不低于7200元,如果这100个书包都可售完,那么兴华商店如何进货才能获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形
中,
.
![]()
(1)如图1,点
为线段
的中点,连接
,
.若
,求线段
的长.
(2)如图2,
为线段
上一点(不与
,
重合),以
为边向上构造等边三角形
,线段
与
交于点
,连接
,
,
为线段
的中点.连接
,
判断
与
的数量关系,并证明你的结论.
(3)在(2)的条件下,若
,请你直接写出
的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料
已知:如图,四边形ABCD是平行四边形;![]()
求作:菱形AECF,使点E,F分别在BC,AD上.
小凯的作法如下:
(1)连接AC;
(2)作AC的垂直平分线EF分别交BC,AD于E,F.
(3)连接AE,CF
所以四边形AECF是菱形.![]()
老师说:“小凯的作法正确”.
回答问题:
已知:在平行四边形ABCD中,点E、F分别在边BC、AD上______________________________________________.(补全已知条件)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com