精英家教网 > 初中数学 > 题目详情
17.如图是一次函数y1=ax+b,y2=cx+d的图象,可以得出不等式组$\left\{\begin{array}{l}{ax+b>0}\\{cx+d<0}\end{array}\right.$解集是(  )
A.x<-2B.-2<x<1C.x>0D.x>1

分析 观察函数图象得到当x>1时,不等式组$\left\{\begin{array}{l}{ax+b>0}\\{cx+d<0}\end{array}\right.$符合.

解答 解:当x>1时,符合不等式组$\left\{\begin{array}{l}{ax+b>0}\\{cx+d<0}\end{array}\right.$.
故选D

点评 本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.计算:$\sqrt{27}+$($\frac{1}{2}$)-2-|-$\sqrt{3}$|+(2016)0-4sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.用换元法解方程:$\frac{{x}^{2}-2}{x}$+$\frac{2x}{{x}^{2}-2}$=3时,若设$\frac{{x}^{2}-2}{x}=y$,并将原方程化为关于y的整式方程,那么这个整式方程是(  )
A.y2-3y+2=0B.y2-3y-2=0C.y2+3y+2=0D.y2+3y-2=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O.与AC相切于点E,连结DE并延长与BC的延长线交于点F.
(1)求证:EF2=BD•CF;
(2)若CF=1,BD=5.求sinA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,两个建筑物AB和CD的水平距离为51m,某同学住在建筑物AB内10楼M室,他观测建筑物CD楼的顶部D处的仰角为30°,测得底部C处的俯角为45°,求建筑物CD的高度.($\sqrt{3}$取1.73,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,点A、点B、点C坐标分别为(5,0)、(10,0)、(0,-5).
(1)求过B、C两点的一次函数解析式;
(2)若直线BC上有一动点P(m,n),以点O、A、P为顶点的三角形面积和以点O、C、P为顶点的三角形面积相等,求P点坐标;
(3)若y轴上有一动点Q,使以点Q、A、C为顶点的三角形为等腰三角形,直接写出Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知关于x,y的方程组$\left\{\begin{array}{l}{2x+y=3m-1}\\{x+2y=-2}\end{array}\right.$的解满足x+y>2,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,AB=6,将以AB为直径的半圆再绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为$\frac{9}{2}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,CD为△ABC的中线,且CD⊥AC,O为BC边上一点,以O为圆心,0C为长半径作⊙O,若⊙O与AB恰好相切于点D,则tanB=(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案