精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,都是等边三角形,且点上.

1)求证:

2)直接写出之间的关系;

【答案】(1)证明见解析;(2)AE+AD=AB

【解析】

1)利用等边三角形的性质,证明△DBC≌△EBA,得到∠EAB=ABC,即可判断;

2)利用(1)中全等三角形的性质得出CD=AE,即可得到AEADAB的关系.

解:(1)证明:∵△ABC和△BDE都是等边三角形,

AB=BCBE=BD,∠ABC=DBE=C=60°

∴∠ABC-ABD=DBE-ABD

∴∠DBC=EBA

∴△DBC≌△EBASAS

∴∠C=EAB=ABC

EABC

2)∵△DBC≌△EBA

CD=AE

CD+AD=AC=AB

AE+AD=AB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)2x27x+3=0 (2)(x2)2=2x4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?(  )

A. 1 B. 2 C. 2﹣2 D. 4﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某共享单车公司提供了手机和会员卡两种支付方式.若用手机支付方式,骑行时间在半小时以内(含半小时)不收费,超出半小时后每半小时收费1元,若选择会员卡支付,骑行时间每半小时收费0.8元,设骑行时间为x小时

(1)根据题意,填写下表(单位:元):

骑行时间(小时)

0.5

2

3

手机支付付款金额(元)

0

会员卡支付付款金额(元)

3.2

(2)设用手机支付付款金额为y1元,用会员卡支付付款金额为y2元,分别写出y1,y2关于x的函数关系式;

(3)若李老师经常骑行该公司的共享单车,他应选择哪种支付方式比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E.当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是(  )

A. 2∠ACE=∠BAC+∠B B. EF=2OC C. ∠FCE=90° D. 四边形AFCE是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点BD分别在ANAM上,连接BD

【发现】

1)如图1,若∠ABC=ADC=90°,则∠BCD=   °CBD   三角形;

【探索】

2)如图2,若∠ABC+ADC=180°,请判断CBD的形状,并证明你的结论;

【应用】

3)如图3,已知∠EOF=120°OP平分∠EOF,且OP=1,若点GH分别在射线OEOF上,且PGH为等边三角形,则满足上述条件的PGH的个数一共有   .(只填序号)

2344个以上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABD≌△CDB,且ABCD是对应边.下面四个结论中不正确的是( )

A. ABD和△CDB的面积相等B. ABD和△CDB的周长相等

C. A+ABD=C+CBDD. ADBC,且AD=BC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为一种新型电子产品在该城市的特约经销商,已知每件产品的进价为40元,该公司每年销售这种产品的其他开支(不含进货价)总计100万元,在销售过程中得知,年销售量y(万件)与销售单价x(元)之间存在如表所示的函数关系,并且发现yx的一次函数.

销售单价x(元)

50

60

70

80

销售数量y(万件)

5.5

5

4.5

4

(1)求yx的函数关系式;

(2)问:当销售单价x为何值时,该公司年利润最大?并求出这个最大值;

【备注:年利润=年销售额﹣总进货价﹣其他开支】

(3)若公司希望年利润不低于60万元,请你帮助该公司确定销售单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.

(1)OM的长等于_______;

(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.

查看答案和解析>>

同步练习册答案