【题目】解下列方程:
(1)2x27x+3=0 (2)(x2)2=2x4
【答案】(1)x1=,x2=3.(2)x1=2,x2=4.
【解析】
(1)先把方程左边分解得到(2x-1)(x-3)=0,原方程转化为2x-1=0或x-3=0,然后解一次方程即可.
(2)移项后提取公因式x-2后利用因式分解法求得一元二次方程的解即可.
解:(1)2x2﹣7x+3=0,原方程可变形为(2x﹣1)(x﹣3)=0
∴2x﹣1=0 或 x﹣3=0,∴x1=,x2=3.
(2)(x﹣2)2=2x﹣4. 原方程可变形为(x﹣2)2=2(x﹣2),移项得,(x﹣2)2﹣2(x﹣2)=0, 提公因式得(x﹣2)(x﹣2﹣2)=0,∴x﹣2=0 或 x﹣4=0,
∴x1=2,x2=4.
科目:初中数学 来源: 题型:
【题目】如图1,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN,
(1)M点如图1的位置时,如果AM=5,求BN的长;
(2)M点在如图2位置时,线段AB、BM、BN三者之间的数量关系__________________;
(3)M点在如图3位置时,当BM=AB时,证明:MN⊥AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1,和均为等边三角形,点在的延长线上,连接,求证:.
(2)类比探究:如图2,和均为等腰直角三角形,,点在边的延长线上,连接.请判断:①的度数为_________.②线段之间的数量关系是_________.
(3)问题解决:在(2)中,如果,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 A 时测得某树(垂直于地面)的影长为 4 米,B 时又测得该树的影长为 16 米,若两次日 照的光线互相垂直,则树的高度为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,,为的中点,连接,且平分,延长交的延长线于点.
(1)求证:;
(2)求证:;
(3)求证:是的平分线;
(4)探究和的面积间的数量关系,并写出探究过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为保障北京2022 年冬季奥运会赛场间的交通服务,北京将建设连接北京城区-延庆区-崇礼县三地的高速铁路和高速公路.在高速公路方面,目前主要的交通方式是通过京藏高速公路(G6),其路程为220公里.为将崇礼县纳入北京一小时交通圈,有望新建一条高速公路,将北京城区到崇礼的道路长度缩短到100公里.如果行驶的平均速度每小时比原来快22公里,那么从新建高速行驶全程所需时间与从原高速行驶全程所需时间比为4:11.求从新建高速公路行驶全程需要多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经销一种成本为每千克元的水产品,据市场分析,若按每千克元销售,一个月能售出,销售单价每涨(或跌)元,月销售量就减少(或增加),解答以下问题:
(1)当销售单价定位每千克元时,计算月销售量和月销售利润;
(2)商店想在月销售成本不超过元的情况下,使得月销售利润达到元,销售单价应为多少?
(3)商店要使得月销售利润达到最大,销售单价应为多少?此时利润为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com