精英家教网 > 初中数学 > 题目详情

【题目】1)问题发现:如图1均为等边三角形,点的延长线上,连接,求证:

2)类比探究:如图2均为等腰直角三角形,点在边的延长线上,连接.请判断:①的度数为_________.②线段之间的数量关系是_________

3)问题解决:在(2)中,如果,求线段的长.

【答案】1)见解析;(2)①,②;(3

【解析】

1)根据等边三角形的性质得到AB=AC=BC,∠BAC=60°AD=AE,∠DAE=60°,利用等量代换得∠BAD=CAE,则可根据“SAS”判断△ABD≌△ACE

2)根据等腰直角三角形的性质得到AB=AC,∠BAD=CAEAD=AE,根据全等三角形的性质得到∠ACE=B=45°BD=CE,等量代换即可得到结论;

3)先证明△CDE是直角三角形,再计算BC=2,从而可得CE=3,再运用勾股定理可得DE的长.

1)证明:是等边三角形

,且

,即

2)∵均为等腰直角三角形,

AB=AC,∠BAC=DAEAD=AE

∴∠BAC+CAD=DAE+CAD

∴∠BAD=CAE

∴∠ACE=B=45°BD=CE

BC+CD=CE

故答案为:①;②

3)由(2)知:

中,

,由(2)得

中,

则线段的长是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AEABAEABBCCDBCCD,请按图中所标注的数据,计算图中实线所围成的面积S是(

A.50B.62C.65D.68

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交ACABEF点,若点DBC边的中点,点M为线段EF上一动点,则CDM的周长的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.

(1)求这条抛物线的解析式;

(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;

(3)在线段BM上是否存在点N,使NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

请结合以上信息解答下列问题:

(1)m=

(2)请补全上面的条形统计图;

(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为

(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,点边的中点,点在直线上,若是轴对称图形,则的度数为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.

(1)如图,若BC=BD,求证:CD=DE;

(2)如图,过点CCH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)2x27x+3=0 (2)(x2)2=2x4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.

1)概念理解:如图2,在四边形ABCD中,ABADCBCD,问四边形ABCD是垂美四边形吗?请说明理由;

2)性质探究:如图1,试在垂美四边形ABCD中探究AB2CD2AD2BC2之间的关系,并说明理由;

3)解决问题:如图3,分别以RtABC的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CEBGGECEBG于点N,交AB于点M.已知ACAB2,求GE的长.

查看答案和解析>>

同步练习册答案