精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交ACABEF点,若点DBC边的中点,点M为线段EF上一动点,则CDM的周长的最小值为_____

【答案】9

【解析】

连接ADAM,由于ABC是等腰三角形,点DBC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点CMA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.

连接ADMA

∵△ABC是等腰三角形,点DBC边的中点,

ADBC

SABCBCAD×6×AD18,解得AD6

EF是线段AC的垂直平分线,

∴点A关于直线EF的对称点为点CMAMC

MC+DMMA+DMAD

AD的长为CM+MD的最小值,

∴△CDM的周长最短=(CM+MD+CDAD+BC6+×66+39

故答案为:9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的一条弦,EAB的中点,过点EECOA于点C,过点B作⊙O的切线交CE的延长线于点D.

(1)求证:DB=DE;

(2)若AB=12,BD=5,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点是正比例函数与反比例函数的图象在第一象限的交点,轴,垂足为点的面积是2.

1)求的值以及这两个函数的解析式;

2)若点轴上,且是以为腰的等腰三角形,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN

(1)M点如图1的位置时,如果AM=5,BN的长;

(2)M点在如图2位置时,线段ABBMBN三者之间的数量关系__________________

(3)M点在如图3位置时,当BM=AB时,证明:MNAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索与证明:

(1)如图1,直线经过正三角形的项点,在直线上取两点,使得.通过观察或测量,猜想线段之间满足的数量关系,并子以证明:

(2)(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使.通过观察或测量,猜想线段之间满足的数量关系,并予以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C90°,∠B30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于MN两点,作直线MN,交BC于点D,连接AD

1)根据作图判断:ABD的形状是   

2)若BD10,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题发现:如图1均为等边三角形,点的延长线上,连接,求证:

2)类比探究:如图2均为等腰直角三角形,点在边的延长线上,连接.请判断:①的度数为_________.②线段之间的数量关系是_________

3)问题解决:在(2)中,如果,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度 米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.

(3)登山多长时间时,甲、乙两人距地面的高度差为50米?

查看答案和解析>>

同步练习册答案