精英家教网 > 初中数学 > 题目详情

【题目】如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.

(1)OM的长等于_______;

(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.

【答案】(1)4;(2)见解析;

【解析】

:(1)由勾股定理可得OM的长度

(2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NROMP,则点P即为所求。

(1)OM==4

故答案为4

(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),

PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2

PA2+PB2=4(a﹣2+

0≤a≤4,

∴当a=时,PA2+PB2 取得最小值

综上,需作出点P满足线段OP的长=

取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NROMP,

则点P即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,都是等边三角形,且点上.

1)求证:

2)直接写出之间的关系;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从宁海县到某市,可乘坐普通列车或高铁,已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.

1)求普通列车的行驶路程;

2)若高铁的平均速度(千米/时)是普通列车的平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).

(1)若ABCA1B1C1关于原点O成中心对称图形,画出A1B1C1

(2)将ABC绕着点A顺时针旋转90°,画出旋转后得到的AB2C2

(3)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出P B1+ P C1的最小值为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆客车从甲地开住乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y(千米)与行驶时间式(小时)之间的函数图象如图所示,则下列说法中错误的是(  )

A. 客车比出租车晚4小时到达目的地B. 客车速度为60千米时,出租车速度为100千米/

C. 两车出发后3.75小时相遇D. 两车相遇时客车距乙地还有225千米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且

1)求点的坐标;

2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;

3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A110),点B06),点PBC边上的动点(点P不与点BC重合),经过点OP折叠该纸片,得点B′和折痕OP.设BP=t

)如图,当BOP=300时,求点P的坐标;

)如图,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m

)在()的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形的对角线相交于点.

1)求证:四边形是菱形;

2)若,求矩形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊿中,,点分别在 边上,且, .

⑴.求证:⊿是等腰三角形;

⑵.当 时,求的度数.

查看答案和解析>>

同步练习册答案