【题目】如图,在△ABC中,AB=AC,点E为BC边上一动点(不与点B、C重合),过点E作射线EF交AC于点F,使∠AEF=∠B.
(1)判断∠BAE与∠CEF的大小关系,并说明理由;
(2)请你探索:当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.
【答案】(1)∠BAE=∠FEC(2)2∠AEF与∠BAE的数量关系是互余
【解析】
试题分析:(1)根据三角形内角与外角的关系可得∠B+∠BAE=∠AEC=∠AEF+∠FEC,再由条件∠AEF=∠B可得∠BAE=∠FEC;
(2)分别根据当∠AFE=90°时,以及当∠EAF=90°时利用外角的性质得出即可.
解:(1)∠BAE=∠FEC;
理由如下:
∵∠B+∠BAE=∠AEC,∠AEF=∠B,
∴∠BAE=∠FEC;
(2)如图1,当∠AFE=90°时,
∵∠B+∠BAE=∠AEF+∠CEF,
∠B=∠AEF=∠C,
∴∠BAE=∠CEF,
∵∠C+∠CEF=90°,
∴∠BAE+∠AEF=90°,
即∠AEF与∠BAE的数量关系是互余;
如图2,当∠EAF=90°时,
∵∠B+∠BAE=∠AEF+∠1,
∠B=∠AEF=∠C,
∴∠BAE=∠1,
∵∠C+∠1+∠AEF=90°,
∴2∠AEF+∠1=90°,
即2∠AEF与∠BAE的数量关系是互余.
科目:初中数学 来源: 题型:
【题目】对x,y定义一种新运算T,规定:(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求a、b的值;
②若关于m的方程T(1﹣m,﹣m2)=﹣2有实数解,求实数m的值;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a、b应满足怎样的关系式?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式中,从左到右的变形是因式分解的是( )
A. x 2 2 x 3 x 12 2 B. x y x y x 2 y 2
C. x 2 y 2 x y 2 D. 2 x 2 y 2x y
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】P点在平面直角坐标系的第二象限,P到x轴的距离为1,到y轴的距离为2,则P点的坐标是( )
A. (-1,2) B. (-2,1) C. (1,-2) D. (2,-1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( )
A. 26元 B. 27元 C. 28元 D. 29元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com