【题目】如图,在中,于,且.
()求证:.
()若,于,为中点,与,分别交于点,.
①判断线段与相等吗?请说明理由.
②求证:.
【答案】见解析
【解析】试题分析:(1)根据SAS证明△ABE≌△CBE,即可得结论;(2)①BH=AC,根据已知条件求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根据ASA证出△DBH≌△DCA,即可得结论;②连接CG,AG,根据AB=BC,BE⊥AC,可得BE垂直平分AC,根据线段垂直平分线的性质可得AG=CG,再由F点是BC的中点,DB=DC,可得DF垂直平分BC,所以BG=CG,即可得AG=BG,在Rt△AEG中,由勾股定理即可推出答案.
试题解析:
()证明:在与中,
,
∴≌,
∴.
()①,
理由:∵,,
∴,,,
∴,,
在与中,
,
∴≌,
∴.
②证明:如图,连接,,
∵,,
∴垂直平分,
∴,
∵点是的中点,,
∴垂直平分,
∴,
∴,
在中,,
∴.
科目:初中数学 来源: 题型:
【题目】如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.
(1)求证:四边形ABEF为菱形;
(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF
(1)求证:四边形BCFE是菱形;
(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是( )
A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】()如图中,,请用直尺和圆规作一条直线,把分割成两个等腰三角形(不写作法,但须保留作图痕迹).
()如图中,的三个内角分别为,,,若,,,在上找一个点,使为等腰三角形,求出的长(可用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,若动点从点开始,按的路径运动一周,且速度为每秒,设运动的时间为秒.
()求为何值时,把的周长分成相等的两部分
()求为何值时,把的面积分成相等的两部分;并求此时的长.
()求为何值时,为等腰三角形?(请直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分13分)在平面直角坐标系中,O为原点,直线y =-2x-1与y轴交于点A,与直线y =-x交于点B,点B关于原点的对称点为点C.
(1)求过A,B,C三点的抛物线的解析式;
(2)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(-1<t<1),当t为何值时,四边形PBQC面积最大,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x、y是有理数,设N=3x2+2y2﹣18x+8y+35,则N( )
A. 一定是负数 B. 一定不是负数 C. 一定是正数 D. N的取值与x、y的取值有关
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com