精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6 ,则FG的长为

【答案】3
【解析】解:∵四边形ABCD是菱形,∠BAD=120°,
∴AB=BC=CD=AD,∠CAB=∠CAD=60°,
∴△ABC,△ACD是等边三角形,
∵EG⊥AC,
∴∠AEG=∠AGE=30°,
∵∠B=∠EGF=60°,
∴∠AGF=90°,
∴FG⊥BC,
∴2SABC=BCFG,
∴2× ×(6 2=6 FG,
∴FG=3
故答案为3

首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2SABC=BCFG即可解决问题.本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)

(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,连接对角线AC、BD,将ABC沿BC方向平移,使点B移到点C,得到DCE.

(1)求证:ACD≌△EDC;

(2)请探究BDE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是一元二次方程x2﹣11x+30=0的两个根(OB>OC).

(1)求点A和点B的坐标.
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.当0<t<3时,求m关于t的函数关系式.
(3)当m=3.5时,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABCDAF平分∠BADBC于点FCE平分∠BCDAD于点E.

    

1              2

(1)求证:四边形AFCE是平行四边形;

(2)如图2BEEC求证:四边形ABFE是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E、F,连接AF,BE相交于点P,若AE=CF,则∠APB=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个饭店所有员工的月收入情况如下:

你认为用来描述该饭店员工的月收入水平不太恰当的是( )

A. 所有员工月收入的平均数

B. 所有员工月收入的中位数

C. 所有员工月收入的众数

D. 所有员工月收入的中位数或众数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,把一条长为2016个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是

查看答案和解析>>

同步练习册答案