精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD的边长为1,∠ABC120°,EFP分别是ABBCAC上的动点,则PE+PF的最小值为_____

【答案】

【解析】

先找出点E关于AC的对称点E′,过点E′作EFBCF,交ACP,根据轴对称确定最短路线问题以及垂线段最短可知EFPE+PF的最小值,过点BBGADG,解直角三角形求出BG,再根据平行线间的距离相等即可得解.

解:如图,

E关于AC的对称点E′,过点E′作EFBCF,交ACP

PE+PFEF为最小值的情况,

过点BBGADG

AB1,∠ABC120°,

∴∠DAB60°,

BGABsin60°=1×

ADBC

EFBG

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3cmBC=4cmPQ两点同时从点C出发,点P沿从的方向运动,速度为2cm/秒;点Q沿从的方向运动,速度为1cm/.当运动时间为t秒﹙0≤t≤3.5﹚时,设△PCQ的面积为ycm2)(当PQ两点未开始运动时,△PCQ的面积为0.ycm2)和t﹙秒﹚的函数关系的图象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,G为边AB中点,∠AGCαQ为线段BG上一动点(不与点B重合),点P在中线CG上,连接PAPQ,记BQkGP

1)若α60°k1

①当BQBG时,求∠PAG的度数.

②写出线段PAPQ的数量关系,并说明理由.

2)当α45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A. 一组数据2,2,3,4,这组数据的中位数是2

B. 了解一批灯泡的使用寿命的情况,适合抽样调查

C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131

D. 某日最高气温是,最低气温是,则该日气温的极差是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市在党中央实施精准扶贫政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)

(1)请直接写出yx以及zx之间的函数关系式;

(2)求wx之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?

(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC是等边三角形,点D是△ABC(包含边界)平面内一点,连接CD,将线段CDC逆时针旋转60°得到线段CE,连接BEDEAD,并延长ADBE于点P

1)观察填空:当点D在图1所示的位置时,填空:

①与△ACD全等的三角形是______

②∠APB的度数为______

2)猜想证明:在图1中,猜想线段PDPEPC之间有什么数量关系?并证明你的猜想.

3)拓展应用:如图2,当△ABC边长为4AD=2时,请直接写出线段CE的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,无人机在600米高空的P点,测得地面A点和建筑物BC的顶端B的俯角分别为60°70°,已知A点和建筑物BC的底端C的距离为286米,求建筑物BC的高.(结果保留整数,参考数据:1.73sin70°≈0.94cos70°≈0.34tan70°2.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BAC=70°,将ABC绕点A逆时针旋转,得到AB'C',连接C'C.若C'CAB,则BAB'=______°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.

1)求yx之间的函数关系式,并写出自变量x的取值范围;

2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?

查看答案和解析>>

同步练习册答案