精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2x9x轴交于AB两点,与y轴交于点C,连接BCAC

1)求ABOC的长;

2)点E从点A出发,沿x轴向点B运动(点E与点AB不重合),过点E作直线l平行BC,交AC于点D.设AE的长为mADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;

3)在(2)的条件下,连接CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

【答案】(1)AB=9OC=9;(2s=m20m9);(3.

【解析】试题分析:1)已知抛物线的解析式,当 可确定点坐标;当时,可确定点的坐标,进而确定的长.
2)直线 可得出相似,它们的面积比等于相似比的平方,由此得到关于的函数关系式;根据题干条件:点与点不重合,可确定的取值范围.
3①首先用列出的面积表达式, 的面积差即为的面积,由此可得关于的函数关系式,根据函数的性质可得到的最大面积以及此时的值;
②过的垂线,这个垂线段的长即为与相切的的半径,可根据相似三角形得到的相关比例线段求得该半径的值,由此得解.

试题解析:(1)已知:抛物线

x=0,y=9,则:C(0,9)

y=0, , ,则:A(3,0)B(6,0)

AB=9OC=9.

(2)

AEDABC

即: 得:

(3)解法一:

0<m<9

∴当 , 取得最大值,最大值为此时,

EBC相切于点M,连接EM,则EMBC,设E的半径为r.

,

BOCBME

∴所求的面积为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象经过AB两点,与x轴交于点C,则此一次函数的解析式为__________△AOC的面积为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有五张正面分别标有数字﹣2﹣1012的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2a﹣1x+aa﹣3=0有两个不相等的实数根,且以x为自变量的二次函数y=x2a2+1x﹣a+2的图象不经过点(10)的概率是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,先把一矩形纸片上下对折,设折痕为;如图②,再把

叠在折痕线上,得到 .过点作,分别交于点

1)求证:

2)在图②中,如果沿直线再次折叠纸片,点能否叠在直线上?请说明理由;

3)在(2)的条件下,若,求的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是作一个角的角平分线的方法:以的顶点为圆心,以任意长为半径画弧,分别交两点,再分别以为圆心,大于长为半径作画弧,两条弧交于点,作射线,过点于点.

(1)若,求的度数;

(2)若,垂足为,求证: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E,F,G,H分别是边AB,BC,CD,DA的中点.

(1)判断四边形EFGH的形状,并证明你的结论;

(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的直径的延长线上,点上,

(1)求证: 的切线;

(2)若的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100 m,此时自B处测得建筑物顶部的仰部角是45°已知测角仪的高度是15 m,请你计算出该建筑物的高度.(取≈1732,结果精确到1 m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】你知道数学中的整体思想吗?解题中,若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体加减,能使问题迅速获解.

例题:已知x2+xy=4xy+y2=-1.求代数式x2-y2的值.

解:将两式相减,得(x2+xy)-(xy+y2)=4-(-1),即x2-y2=5;请用整体思想解答下列问题:

1)在例题的基础上求(x+y)2的值;

2)若关于xy的二元一次方程组的解也是二元一次方程x+y=6的解,求k的值.

查看答案和解析>>

同步练习册答案