精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在⊙O中,,弦CD与弦AB交于点F,连接BC,若∠ACD=60°,⊙O的半径长为2cm.

(1)求∠B的度数及圆心O到弦AC的距离;

(2)求图中阴影部分面积.

【答案】(1)1(2)(π﹣)cm2

【解析】

(1)连接OA,OC,过O作OE⊥AC,垂足为点E,求出∠ABC=∠ACD即可,求出∠AOC度数,即可求出OE;(2)求出△AOC和扇形AOC的面积即可.

(1)解:如图,连接OA,OC,过O作OE⊥AC,垂足为点E,

∵弧AD=弧AC,

∴∠ABC=∠ACD

∵∠ACD=60°,

∴∠ABC=∠ACD=60°,

∴∠AOC=2∠ABC=120°,

又∵OA=OC,∴∠AOE=∠COE=×120°=60°,

在Rt△AOE中,OA=2,OE=OAcos60°=1.

(2)在Rt△AOE中,OA=2,OE=1,

∴由勾股定理得:AE=

∴AC=2AE=2

∴S阴影=S扇形OAC﹣S△OAC×2×1=(π﹣)cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+c,当x3时,y有最小值﹣4,且图象经过点(112)

(1)求此二次函数的解析式;

(2)该抛物线交x轴于点AB(A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,若AB2BC4,则点C与其对应点C的距离为( )

A. 6 B. 8 C. 2 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+nx轴于点A,交y轴于点C(04),抛物线yx2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点Px轴的垂线PD,过点BBDPD于点D,连接PB,设点P的横坐标为m

(1)求抛物线的解析式;

(2)当△BDP为等腰直角三角形时,求线段PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,点C为O上一点,CN为O的切线,OMAB于点O,分别交AC、CN于D、M两点.

(1)求证:MD=MC;

(2)若O的半径为5,AC=4,求MC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+ca0)的图象的对称轴为直线x=﹣1,下列结论正确的有_____(填序号).

若图象过点(﹣3y1)、(2y2),则y1y2

ac0

③2ab0

b24ac0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,C、D为⊙O上的点,∠ACD=2∠A,CE⊥DB交DB的延长线于点E.

(1)求证:直线CE与⊙O相切;

(2)若AC=8,AB=10,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+3A(30)B(10)两点,交y轴于点C

(1)求该抛物线的表达式.

(2)P是该抛物线上的动点,当△PAB的面积等于△ABC的面积时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.

(1)求证:BD=CD;

(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

查看答案和解析>>

同步练习册答案