精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=﹣x+nx轴于点A,交y轴于点C(04),抛物线yx2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点Px轴的垂线PD,过点BBDPD于点D,连接PB,设点P的横坐标为m

(1)求抛物线的解析式;

(2)当△BDP为等腰直角三角形时,求线段PD的长.

【答案】(1)yx2x2(2)PD

【解析】

1)由点C坐标,得直线方程为:y=-x+n=-x+4,从而求出点A坐标,把点AB坐标代入二次函数表达式即可求解;
2)设点Pmm2-m-2),当BDP为等腰直角三角形时,BD=PD,即可求解.

(1)由点C坐标,得直线方程为:y=﹣x+n=﹣x+4

y0,解得:x3,则点A(30)

把点AB坐标代入二次函数表达式,

解得:b=﹣c=﹣2

则函数表达式为:yx2x2

(2)设点P(mm2m2)

B(0,﹣2),则点D(m,﹣2)

BDP为等腰直角三角形时,BDPD

即: m2m2(2)m

解得:m(m0舍去)

PDBDm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC和A′B′C是两个完全重合的直角三角板,B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为16cm的等腰直角三角形.

(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法)

(2)请求出所制作圆锥底面的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+c(a0)的图象如图,给出下列四个结论:

①b24ac0

②4a2b+c0

③3b+2c0

④m(am+b)ab(m≠﹣1)

其中正确结论的个数是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,CAB延长线上一点,CD⊙O相切于点EAD⊥CD于点D

1)求证:AE平分∠DAC

2)若AB=4∠ABE=60°

AD的长;

求出图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在⊙O中,,弦CD与弦AB交于点F,连接BC,若∠ACD=60°,⊙O的半径长为2cm.

(1)求∠B的度数及圆心O到弦AC的距离;

(2)求图中阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的顶点为C,对称轴为直线,且经过点A(3,-1),与y轴交于点B.

(1)求抛物线的解析式;

(2)判断ABC的形状,并说明理由;

(3)经过点A的直线交抛物线于点P,交x轴于点Q,若,试求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.

(1)直接写出vt的函数关系式;

(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.

①求两车的平均速度;

②甲、乙两地间有两个加油站AB,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.

查看答案和解析>>

同步练习册答案