精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC和A′B′C是两个完全重合的直角三角板,B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为 cm.

【答案】

【解析】

试题根据RtABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长:

在RtABC中,B=30°,AB=10cmAC=AB=5cm

根据旋转的性质知,A′C=AC,A′C=AB=5cm

点A′是斜边AB的中点,AA′=AB=5cm

AA′=A′C=AC,∴∠A′CA=60°

CA′旋转所构成的扇形的弧长为:(cm)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,PA、PB是⊙O的两条切线,A、B是切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的口袋里装有四个小球,球面上分别标有数字﹣2、0、1、2,它们除数字不同外没有任何区别,每次实验先搅拌均匀.

(1)从中任取一球,求抽取的数字为负数的概率;

(2)从中任取一球,将球上的数字记为x(不放回);再任取一球,将球上的数字记为y,试用画树状图(或列表法)表示所有可能出现的结果,并求“x+y>0”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象与x轴交于AB两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

1)求ABC的坐标;

2)点M为线段AB上一点(点M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQ∥AB交抛物线于点Q,过点QQN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点Fy轴的平行线,与直线AC交于点G(点G在点F的上方).FG=DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为预防疾病,某校对教室进行药熏消毒.已知药物燃烧阶段,室内每立方米空气中的含药量mg)与燃烧时间(分钟)成正比例;燃烧后, 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:

1求药物燃烧时的函数关系式.(2求药物燃烧后的函数关系式.

3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一动点从原点出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到(0,1),(1,1),(1,0),(2,0),…那么点的坐标为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+c,当x3时,y有最小值﹣4,且图象经过点(112)

(1)求此二次函数的解析式;

(2)该抛物线交x轴于点AB(A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是(  )

A. 的收入去年和前年相同

B. 的收入所占比例前年的比去年的大

C. 去年的收入为2.8万

D. 前年年收入不止①②③三种农作物的收入

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+nx轴于点A,交y轴于点C(04),抛物线yx2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点Px轴的垂线PD,过点BBDPD于点D,连接PB,设点P的横坐标为m

(1)求抛物线的解析式;

(2)当△BDP为等腰直角三角形时,求线段PD的长.

查看答案和解析>>

同步练习册答案