【题目】如图所示,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形.
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
【答案】
(1)解:证明∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠DAE=∠AEB.
∵AE是角平分线,
∴∠DAE=∠BAE.
∴∠BAE=∠AEB.
∴AB=BE.
同理AB=AF.
∴AF=BE.
∴四边形ABEF是平行四边形.
∵AB=BE,
∴四边形ABEF是菱形.
(2)解:作OH⊥AD于H,如图所示
∵四边形ABEF是菱形,∠ABC=60°,AB=4,
∴AB=AF=4,AP⊥BF,
∴∠ABF=∠AFB=30°,
∴AP= AB=2,
∴PH= ,AH=1,DH=AD-AH=5,
∴tan∠ADP= = .
【解析】(1)由平行四边形的性质和角平分线的定义得∠BAE=∠AEB.证出AB=BE.同理AB=AF.得出AF=BE.证出四边形ABEF是平行四边形即可得出结论.(2)作OH⊥AD于H,由菱形的性质得出AB=AF=4,∠ABC=60°,AO⊥BF,∠ABF=∠AFB=30°,由含30°角的直角三角形的性质得出AO= AB=2,求出OH、DH,即可得出结果。
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1 , M2 , M3 , …Mn分别为边B1B2 , B2B3 , B3B4 , …,BnBn+1的中点,△B1C1M1的面积为S1 , △B2C2M2的面积为S2 , …△BnCnMn的面积为Sn , 则Sn= . (用含n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴、y轴上,反比例函数y= (x>0)的图像经过点D,且与边BC交于点E,则点E的坐标为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax+bx+c上部分点的横坐标x,纵坐标y的对应值如下表,从下表可知:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
下列说法错误的是( )。
A.抛物线与x轴的另一个交点为(3,0);
B.函数的最大值为6;
C.抛物线的对称轴是直线x=0.5;
D.在对称轴的左侧,y随x的增大而增大。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是 ,则矩形ABCD的面积是( )
A.
B.5
C.6
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图⊙O中,半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=8,CD=2,则EC的长度为( )
A.2
B.8
C.2
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com