【题目】如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴、y轴上,反比例函数y= (x>0)的图像经过点D,且与边BC交于点E,则点E的坐标为.
【答案】(2,7)
【解析】解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,
∵四边形ABCD是矩形,
∴∠BAD=90°,AD=BC,
∴∠OAB+∠DAF=90°,
∴∠ABO=∠DAF,
∴△AOB∽△DFA,
∴OA:DF=OB:AF=AB:AD,
∵AB:BC=3:2,点A(3,0),B(0,6),
∴AB:AD=3:2,OA=3,OB=6,
∴DF=2,AF=4,
∴OF=OA+AF=7,
∴点D的坐标为:(7,2),
∴反比例函数的解析式为:y= ①,点C的坐标为:(4,8),
设直线BC的解析式为:y=kx+b,
则 ,
解得:
∴直线BC的解析式为:y= x+6②,
联立①②得: 或 (舍去),
∴点E的坐标为:(2,7).
所以答案是:(2,7).
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.
(1)求证:AD⊥CD;
(2)若AD=2, ,求⊙O的半径R的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°. ①求⊙O的半径;
②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax+bx-3(a≠0)与x轴交于点
A(-2,0)、B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?
(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点M,使 : =5:2,求M点坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形.
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组 请结合题意填空,完成本题的解答.
(1)解不等式①,得;
(2)解不等式②,得;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com