【题目】问题背景
在数学活动课上,张老师要求同学们拿两张大小不同的矩形纸片进行旋转变换探究活动.如图 1,在矩形纸片ABCD 和矩形纸片EFGH中,AB=1,AD=2,且FE>AD,FG>AB,点E 是 AD 的中点,矩形纸片 EFGH 以点E 为旋转中心进行逆时针旋转,在旋转过程中会产生怎样的数量关系,提出恰当的数学问题并加以解决.
解决问题
下面是三个学习小组提出的数学问题,请你解决这些问题.
(1)“奋进”小组提出的问题是:如图 1,当 EF 与 AB 相交于点 M,EH 与 BC 相交于点 N 时,求证:EM=EN.
(2)“雄鹰”小组提出的问题是:在(1)的条件下,当 AM=CN 时,AM 与 BM 有怎样的数量关系,请说明理由.
(3)“创新”小组提出的问题是:若矩形 EFGH 继续以点 E 为旋转中心进行逆时针旋转,当 时,请你在图 2 中画出旋转后的示意图,并求出此时 EF 将边 BC 分成的两条线段的长度.
【答案】(1)证明见解析;(2)AM=BN;(3)EF 将边 BC 分成的两条线段的长度为 .
【解析】试题分析:(1)过点 E 作 ,垂足为点P,根据已知条件证出PE=AE,再证得∠PEN=∠AEM,进而得到△PEN≌△AEM,即可证得结论;(2)易证PN=CN= PC,进而求出PN=CN=,再判断出AM=PN=,即可得出BM=,从而证得结论;(3)在Rt△PEM中,求出PM的长,再用线段的和差即可得出结论.
试题解析:
(1) 如图1,过点 E 作 ,垂足为点 P,
则四边形 ABPE 是矩形,∴PE=AB=1, ,
∵ 点 E 是 AD 的中点,∴ ,∴PE=AE,
∵ ,∴ ,
∵PE=AE, ,∴,∴EM=EN.
(2) 由(1)知, ,∴AM=PN,
∵AM=CN,∴PN=CN=PC,
∵ 四边形 EPCD 是矩形,∴PC=DE=1,PN=CN=,
∴AM=PN=,BM=AB-AM=,∴AM=BN.
(3)如图2,当∠AEF=60°时,
设EF与BC交于M,EH与CD交于N,过点E作EP⊥BC于P,连接EC,
由(1)知,CP=EP=1,AD∥BC,
∴∠EMP=∠AEF=60°,
在Rt△PEM中,PM=,
∴BM=BP﹣PM=1﹣,CM=PC+PM=1+,
∴EF将边BC分成的两条线段的长度为1﹣,1+.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+2(a≠0)的图象与x 轴交于A,B 两点,与y 轴交于点C,已知点 A(-4,0),B(1,0).
(1)求抛物线的解析式;
(2)若点 D(m,n) 是抛物线在第二象限的部分上的一动点,四边形 的面积为 ,求 关于 m 的函数关系;
(3)若点 E 为抛物线对称轴上任意一点,当以 A,C,E 为顶点的三角形是直角三角形时,请求出满足条件的所有点 E 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】徐州市总投资为443亿元的轨道交通1、2、3号线同时共建中,建成后将有效缓解我市交通压力、便利市民出行、提高城市整体实力,443亿用科学记数法表示为( )
A.0.443×1010
B.4.43×109
C.443×108
D.4.43×1010
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察如图所示的长方体后填空
用符号表示下列两棱的位置关系:
A1B1____AB ,AA1____AB ,
A1D1____C1D1 , AD____BC;
(2)A1B1与BC所在的直线是两条不相交的直线,他们_ ___平行线(填“是”或“不是”).由此可知,在__________,两条不相交的直线才能叫平行线.
(3)在同一平面内,两条不重合的直线位置关系只有_____种,即_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调查,若每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,假命题是( )
A. 一组对边相等的四边形是平行四边形
B. 三个角是直角的四边形是矩形
C. 四边相等的四边形是菱形
D. 有一个角是直角的菱形是正方形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com