精英家教网 > 初中数学 > 题目详情

【题目】如图,在折纸活动中,小明制作了一张⊿ABC纸片,点DE分别是边ABAC上,将⊿ABC沿着DE折叠压平,AA’重合,若∠A=75°,则∠1+∠2=( )

A. 150° B. 210° C. 105° D. 75°

【答案】A

【解析】试题分析:先根据图形翻折变化的性质得出△ADE≌△A′DE∠AED=∠A′ED∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.

解:∵△A′DE△ABC翻折变换而成,

∴∠AED=∠A′ED∠ADE=∠A′DE∠A=∠A′=75°

∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°

∴∠1+∠2=360°﹣2×105°=150°

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在下列每个图形中(每个图形都各自独立),是否存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在宿州十一中校园文化艺术节中,九年级十班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.

1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;

2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将下列方格纸中的△ABC向右平移7格,再向下平移2格,得到△.(1)画出平移后的三角形;

2)若AB=5,则=

3)连接AA1,BB1, 根据“图形平移”的性质,得:线段AA1与线段BB1数量关系和位置关系:

(4)求图中AC+∠BC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】万达旅行社为吸引市民组团去黄山风景区旅游,推出了如下的收费标准:

宿州高铁新区组织员工去黄山风景区旅游,共支付给万达旅行社旅游费用27 000元,请问该单位这次共有多少员工去黄山风景区旅游?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动.

1)如图1,已知AEBE分别是∠BAO和∠ABO角的平分线,点AB在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.

2)如图2,已知AB不平行CDADBC分别是∠BAP和∠ABM的角平分线,ADBC的延长线交于点F,点AB在运动的过程中,∠F= °DECE又分别是∠ADC和∠BCD的角平分线,点AB在运动的过程中,∠CED的大小也不发生变化,其大小为∠CED= °.

3)如图3,延长BAG,已知∠BAOOAG的角平分线与∠BOQ的角平分线及其延长线相交于EF,则∠EAF= ° ;在AEF中,如果有一个角是另一个角的3倍,则∠ABO= °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个港口相距72千米,一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回;一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,并立即返回(掉头时间忽略不计)。已知水流速度是2千米/时,下图表示轮船和快艇距甲港的距离y(千米)与轮船出发时间x(小时)之间的函数关系式,结合图象解答下列问题:

(顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度)

(1)轮船在静水中的速度是 千米/时;快艇在静水中的速度是 千米/时;

(2)求快艇返回时的解析式,写出自变量取值范围;

(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,CD的右侧,BE平分ABC,DE平分ADC,BE、DE所在直线交于点E,ADC=70°.

(1)EDC的度数;

(2)ABC=n°,BED的度数(用含n的代数式表示);

(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

查看答案和解析>>

同步练习册答案