精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC△ADE都是等腰三角形,且∠BAC=90°∠DAE=90°BCD在同一条直线上.求证:BD=CE

【答案】证明:∵△ABC△ADE都是等腰直角三角形

∴AD=AE AB=AC

∵∠EAC=90°+∠CAD∠DAB=90°+∠CAD

∴∠DAB=∠EAC

△ADB△AEC

∴△ADB≌△AECSAS

【解析】试题分析:求出AD=AEAB=AC∠DAB=∠EAC,根据SAS证出△ADB≌△AEC即可.

证明:∵△ABC△ADE都是等腰直角三角形

∴AD=AEAB=AC

∵∠EAC=90°+∠CAD∠DAB=90°+∠CAD

∴∠DAB=∠EAC

△ADB△AEC

∴△ADB≌△AECSAS),

∴BD=CE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想:如图(1),当点D在线段BC上时,

①BC与CF的位置关系是:
②BC、CD、CF之间的数量关系为:(将结论直接写在横线上)
(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线ADBCD,过BBE⊥ADADF,交ACE.

(1)求证:△ABE为等腰三角形;

(2)已知AC=11,AB=6,求BD长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,AB的垂直平分线交AC于点N,交BC的延长线于点M,A=40°.

(1)求∠NMB的大小.

(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.

(3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)

(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC∠A=36°BDCE分别是∠ABC∠BCD的角平分线,则图中的等腰三角形有(  )

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小华在某月的日历中圈出几个数,算得这三个数的和为36,那么这几个数的形式可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
(1)当∠AOB=20°时,求所作圆的半径;(结果精确到0.01cm)
(2)保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm) (参考数据:sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.
(1)乙队调离时,甲、乙两队已完成的清雪总量为吨;
(2)求此次任务的清雪总量m;
(3)求乙队调离后y与x之间的函数关系式.

查看答案和解析>>

同步练习册答案