【题目】某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.
(1)第一次所购该蔬菜的进货价是每千克多少元?
(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?
【答案】(1)4;(2)7.
【解析】
试题(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;
(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.
试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得
,
解得:x=4.
经检验x=4是原方程的根,
答:第一次所购该蔬菜的进货价是每千克4元;
(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100
第二次所购该蔬菜数量为:100×2=200
设该蔬菜每千克售价为y元,根据题意,得
[100(1-2%)+200(1-3%)]y-400-700≥944.
解得:y≥7.
答:该蔬菜每千克售价至少为7元.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.
(1)求证:CE是⊙O的切线;
(2)若AE=1,CE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的顶点A、B、D的坐标分别为(0,5)、(0,2)、(4,5),直线l的解析式为y=kx+2﹣4k(k>0).
(1)当直线l经过原点O时,求一次函数的解析式;
(2)通过计算说明:不论k为何值,直线l总经过点C;
(3)在(1)的条件下,点M为直线l上的点,平面内是否存在x轴上方的点N,使以点O、A、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知的三个顶点的坐标分别为、、.
(1)画出关于原点对称的三角形;
(2)将三角形、、绕坐标原点逆时针旋转,画出图形,直接写出的对应点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA,OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连结AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=8.
(1)求证:∠ECD=∠EDC;
(2)若tanA=,求DE长;
(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出-匹,每匹马赛一次,赢得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强.
(1)如果齐王将马按下中上的顺序出阵比赛,那么田忌的马如何出阵才能获胜?
(2)如果齐王将马按下中上的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
已知是等腰直角三角形,,,为的中点.
(1)如图:过作,分别交、于、.求证:.
(2)如图,若,分别与、的延长线交于点、,此时(1)中的结论还成立吗?若成立,请说明理由,若不成立,请举例说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com