精英家教网 > 初中数学 > 题目详情

【题目】已知,直线ABDC,点P为平面上一点,连接APCP.

(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,DCP=20°时,求∠APC.

(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.

(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,AKC与∠APC有何数量关系?并说明理由.

【答案】(1)80°;(2)见解析;(3)见解析

【解析】整体分析:

分别过点P,KAB的平行线,利用平行线的性质和角平分线的定义即可求解.

解:(1)如图1,过PPEAB,

ABCD,

PEABCD,

∴∠APE=BAP,CPE=DCP,

∴∠APC=APE+∠CPE=BAP+∠DCP=60°+20°=80°;

(2)AKC=APC.

理由:如图2,过KKEAB,

ABCD,

KEABCD,

∴∠AKE=BAK,CKE=DCK,

∴∠AKC=AKE+∠CKE=BAK+∠DCK,

PPFAB,

同理可得,∠APC=BAP+∠DCP,

∵∠BAP与∠DCP的角平分线相交于点K,

∴∠BAK+∠DCK=BAP+DCP=BAP+∠DCP)=APC,

∴∠AKC=APC;

(3)AKC=APC.

理由:如图3,过KKEAB,

ABCD,

KEABCD,

∴∠BAK=AKE,DCK=CKE,

∴∠AKC=AKE﹣CKE=BAK﹣DCK,

PPFAB,

同理可得,∠APC=BAP﹣DCP,

∵∠BAP与∠DCP的角平分线相交于点K,

∴∠BAK﹣DCK=BAP﹣DCP=BAP﹣DCP)=APC,

∴∠AKC=APC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.

(1)求抛物线的函数表达式;

(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求ACE面积的最大值,并求出此时点E的坐标;

(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB10DH4,平移距离为6,则阴影部分面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是(  )

A. 20 B. 25 C. 30 D. 35

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是(  )

A. 甲队率先到达终点 B. 甲队比乙队多走了200米路程

C. 乙队比甲队少用0.2分钟 D. 比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在正方形ABCD中,点P1cm/s的速度从点A出发按箭头方向运动,到达点D停止. △PAD的面积y(cm)与运动时间x(s)之间的函数图像如图②所示.(规定:点P在点A,D时,y=0)

发现:(1)AB= _______cm,当x=17时,y=_________cm2

(2)当点P在线段_________上运动时,y的值保持不变.

拓展:求当0<x<612<x<18时,yx之间的函数关系式.

探究:当x为多少时,y的值为15?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OA.OB是O的半径且OAOB,作OA的垂直平分线交O于点C.D,连接CB.AB

求证:ABC=2CBO

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的个数是(

1a0都是单项式

2)多项式的次数是3

3)单项式的系数是

4x2+2xyy2可读作x22xy、-y2的和

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,∠B=90°,AB=8AD=24BC=26,点P从点A出发,以1的速度向点D运动;点Q从点C同时出发,以3的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为.

1为何值时,四边形PQCD为平行四边形?

2为何值时,四边形PQCD为等腰梯形?(等腰梯形的两腰相等,两底角相等).

查看答案和解析>>

同步练习册答案