【题目】在△ABC中,∠ABC=120°,线段AC绕点C顺时针旋转60°得到线段CD,连接BD.
(1)如图1,若AB=BC,求证:BD平分∠ABC;
(2)如图2,若AB=2BC,
①求的值;
②连接AD,当S△ABC=时,直接写出四边形ABCD的面积为 .
【答案】(1)详见解析;(2)① ;② .
【解析】
(1)连接AD,证△ACD是等边三角形,再证△ABD≌△CBD,推出∠CBD=∠ABD,即得出结论;
(2)①连接AD,作等边三角形ACD的外接圆⊙O,证点B在⊙O上,在BD上截取BM,使BM=BC,证△CBA≌△CMD,设BC=BM=1,则AB=MD=2,BD=3,过点C作CN⊥BD于N,可求出BN=BC=,CN=BC=,ND=BD﹣BN=,CD=,即可求出==;
②分别过点B,D作AC的垂线,垂足分别为H,Q,设CB=1,AB=2,CH=x,则由①知,AC=,AH=﹣x,在Rt△BCH与Rt△BAH中利用勾股定理求出BH的值,再求出DQ的值,求出=,因为AC为△ABC与△ACD的公共底,所以=,可求出△ACD的面积,进一步求出四边形ABCD的面积.
(1)证明:如图1,连接AD,
由题意知,∠ACD=60°,CA=CD,
∴△ACD是等边三角形,
∴CD=AD,
又∵AB=CB,BD=BD,
∴△ABD≌△CBD(SSS),
∴∠CBD=∠ABD,
∴BD平分∠ABC;
(2)解:①如图2,连接AD,作等边三角形ACD的外接圆⊙O,
∵∠ADC=60°,∠ABC=120°,
∴∠ADC+∠ABC=180°,
∴点B在⊙O上,
∵AD=CD,
∴,
∴∠CBD=∠CAD=60°,
在BD上截取BM,使BM=BC,
则△BCM为等边三角形,
∴∠CMB=60°,
∴∠CMD=120°=∠CBA,
又∵CB=CM,∠BAC=∠BDC,
∴△CBA≌△CMD(AAS),
∴MD=AB,
设BC=BM=1,则AB=MD=2,
∴BD=3,
过点C作CN⊥BD于N,
在Rt△BCN中,∠CBN=60°,
∴∠BCN=30°,
∴BN=BC=,CN=BC=,
∴ND=BD﹣BN=,
在Rt△CND中,
CD===,
∴AC=,
∴=;
②如图3,分别过点B,D作AC的垂线,垂足分别为H,Q,
设CB=1,AB=2,CH=x,
则由①知,AC=,AH=-x,
在Rt△BCH与Rt△BAH中,
BC2﹣CH2=AB2﹣AH2,
即1﹣x2=22-(-x)2,
解得,x=,
∴BH==,
在Rt△ADQ中,DQ= AD=×=,
∴==,
∵AC为△ABC与△ACD的公共底,
∴==,
∵S△ABC=,
∴S△ACD=,
∴S四边形ABCD==,
故答案为:.
科目:初中数学 来源: 题型:
【题目】操作、证明:如图,在平行四边形ABCD中,连接AC,以点C为圆心BC为半径画弧,交△ABC的外接圆O于点E,连接AE、CE.
(1)求证:AD=CE,∠D=∠E.
(2)连接CO,求证:CO平分∠BCE.
(3)判断:“一组对边相等且一组对角相等的四边形是平行四边形”是 命题(填“真”或“假”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲命中的环数(环) | 6 | 7 | 8 | 6 | 8 |
乙命中的环数(环) | 5 | 10 | 7 | 6 | 7 |
根据以上数据,下列说法正确的是( )
A.甲的平均成绩大于乙B.甲、乙成绩的中位数不同
C.甲、乙成绩的众数相同D.甲的成绩更稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.
(1)转动甲转盘,指针指向的数字小于3的概率是 ;
(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超速行驶是一种十分危险的违法驾驶行为,在一条笔直的高速公路MN上,小型车限速为每小时120千米,设置在公路旁的超速监测点C,现测得一辆小型车在监测点C的南偏西30°方向的A处,7秒后,测得其在监测点C的南偏东45°方向的B处,已知BC=200米,B在A的北偏东75°方向,请问:这辆车超速了吗?通过计算说明理由.(参考数据: ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
①S△ODB=S△OCA;
②四边形OAMB的面积不变;
③当点A是MC的中点时,则点B是MD的中点.
其中正确结论的个数是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com