精英家教网 > 初中数学 > 题目详情
5.(1)解不等式:2(x-3)-2≤0         
(2)解方程组:$\left\{\begin{array}{l}{2x-y=5①}\\{x-1=\frac{1}{2}(2y-1)②}\end{array}\right.$.

分析 (1)先去括号,再移项、合并同类项,不等式两边同乘以$\frac{1}{2}$,即可得出不等式的解集;
(2)先把②整理,再由减法消去x求出y,然后代入①求出x即可,

解答 解:(1)去括号,得:2x-6-2≤0,
移项,得:2x≤6+2,
合并同类项,得:2x≤8,
两边同乘以$\frac{1}{2}$,得:x≤4;
∴原不等式的解集为:x≤4.
(2)由②得:2x-2y=1③,
 ①-②得:y=4,
把y=4代入①得:x=$\frac{9}{2}$,
∴原方程组的解为:$\left\{\begin{array}{l}x=\frac{9}{2}\\ y=4\end{array}$

点评 本题考查了不等式的解法、二元一次方程组的解法;熟练掌握不等式的解法和用加减法解方程组是解决问题的关键,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,在?ABCD中,DE⊥AB,DF⊥BC,∠EDF=120°,求∠B与∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.二次函数y=x2-2x-3的图象如图所示,下列说法中错误的是(  )
A.函数图象与y轴的交点坐标是(0,-3)
B.顶点坐标是(1,-3)
C.函数图象与x轴的交点坐标是(3,0)、(-1,0)
D.当x<0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.与2互为相反数的是(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知抛物线y=-$\frac{1}{2}$x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.
(1)直接写出抛物线的解析式:y=-$\frac{1}{2}$x2+3x+8;
(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?
(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,-$\frac{9}{2}$),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.
(l)求抛物线所对应的二次函数的表达式;
(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;
(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在函数y=$\frac{1-x}{x-2}$中,自变量x的取值范围是x≠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上为合格,达到9分以上(含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.
(1)补充完成下列的成绩统计分析表:
组别平均分中位数方差合格率优秀率
6.763.4190%20%
7.17.51.6980%10%
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.

查看答案和解析>>

同步练习册答案