精英家教网 > 初中数学 > 题目详情

【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.

(1)若轮船照此速度与航向航行,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据: ≈1.4, ≈1.7)

【答案】
(1)

解:解:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,如图所示.

∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,

∴∠ECB=30°,∠ACF=60°,

∴∠BCA=90°,

∵BC=12,AB=36× =24,

∴AB=2BC,

∴∠BAC=30°,∠ABC=60°,

∵∠ABC=∠BDC+∠BCD=60°,

∴∠BDC=∠BCD=30°,

∴BD=BC=12,

∴时间t= = 小时=20分钟,

∴轮船照此速度与航向航向,上午11:00到达海岸线.


(2)

解:∵BD=BC,BE⊥CD,

∴DE=EC,

在RT△BEC中,∵BC=12海里,∠BCE=30°,

∴BE=6海里,EC=6 ≈10.2海里,

∴CD=20.4海里,

∵20海里<20.4海里<21.5海里,

∴轮船不改变航向,轮船可以停靠在码头.


【解析】(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,首先证明△ABC是直角三角形,再证明∠BAC=30°,再求出BD的长即可角问题.(2)求出CD的长度,和CN、CM比较即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形EFGH内接于△ABC,且边FG落在BC上,AD⊥BC,BC=3cm,AD=2cm,EF= EH,求EH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:
(1)函数y=|x﹣1|的自变量x的取值范围是
(2)列表,找出y与x的几组对应值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=
(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;
(4)写出该函数的一条性质:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BD是矩形ABCD的对角线.

(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).
(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,是中心对称图形,但不是轴对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形纸片ABCD中,AB=4,BC=10,E是AD边的中点,把矩形纸片沿过点E的直线折叠,使点A落在BC边上,则折痕EF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x(x﹣k)经过原点O,交x轴正半轴于A,过A的直线交抛物线于另一点B,AB交y轴正半轴于C,且OC=OA,B点的纵坐标为9

(1)求抛物线的解析式;
(2)点P为第一象限的抛物线上一点,连接PB、PC,设P点的横坐标为m,△PBC的面积为S,求S与m的函数关系式;
(3)在(2)的条件下,连接OP、AP,若∠APO=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是 的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.
(1)求证:AC=CD;
(2)若OB=2,求BH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)经过A、B、C三点,点A、C的坐标分别是(0,4)、(﹣1,0).

(1)求此抛物线的解析式;
(2)点P是第一象限内抛物线上的一动点,当△ABP的面积最大时,求出此时P的坐标及面积的最大值;
(3)若G为抛物线上的一动点,F为x轴上的一动点,点D坐标为(1,4),点E坐标为(1,0),当D、E、F、G构成平行四边形时,请直接写出点G的坐标.

查看答案和解析>>

同步练习册答案