如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.
(1)求证:∠ACM=∠ABC;
(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求AC的长.
![]()
![]()
【考点】切线的性质.
【分析】(1)连接OC,由∠ABC+∠BAC=90°及CM是⊙O的切线得出∠ACM+∠ACO=90°,再利用∠BAC=∠ACO,得出结论,
(2)连接OC,得出△AEC是直角三角形,△AEC的外接圆的直径是AC,利用△ABC∽△CDE,求出AC.
【解答】(1)证明:如图,连接OC,
![]()
![]()
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ABC+∠BAC=90°,
又∵CM是⊙O的切线,
∴OC⊥CM,
∴∠ACM+∠ACO=90°,
∵CO=AO,
∴∠BAC=∠ACO,
∴∠ACM=∠ABC;
(2)解:∵BC=CD,∠ACB=90°,
∴∠OAC=∠CAD,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠OCA=∠CAD,
∴OC∥AD,
又∵OC⊥CE,
∴AD⊥CE,
∴△AEC是直角三角形,
∴△AEC的外接圆的直径是AC,
又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,
∴△ABC∽△CDE,
∴![]()
=![]()
,
⊙O的半径为3,
∴AB=6,
∴![]()
=![]()
,
∴BC2=12,
∴BC=2![]()
,
∴AC=![]()
=2![]()
.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.解题的关键是找准角的关系.
科目:初中数学 来源: 题型:
在一个口袋里装着白、红、黑三种颜色的小球(除颜色外形状大小完全相同),其中白球3个、红球2个、黑球1个.
(1)随机从袋中取出一个球,求取出的球是黑球的概率;
(2)若取出的第一只球是红球,不将它放回袋里,从袋中余下的球中再随机地取出1个,这时取出的球是黑球的概率是多少?
(3)若取出一个球,将它放回袋中,从袋中再随机地取出一个球,两次取出的球都是白球的概率是多少?(用列表法或树状图计算)
查看答案和解析>>
科目:初中数学 来源: 题型:
红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.
(1)请用树状图或列表法列举出各种可能选派的结果;
(2)求恰好选派一男一女两位同学参赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
某班为调查每个
学生用于课外作业的平均时间,从该班学生中随机抽取了10名学生进行调查,得到他们用于课外作业的时间(单位:min)如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学生用于课外作业的平均时间是
A.80 B.81 C.82 D.83
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com