精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,∠C90°,∠B30°ADABC的角平分线.

1)求证:BD2CD

2)若CD2,求ABD的面积.

【答案】1)见解析;(26

【解析】

1)过DDEABE,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;
2)依据AD=BD=2CD=4,即可得到RtACD中,,再根据△ABD的面积=进行计算即可.

解:(1)如图,过DDEABE


∵∠C=90°AD是△ABC的角平分线,
DE=CD
又∵∠B=30°
RtBDE中,DE=BD
BD=2DE=2CD

2)∵∠C=90°,∠B=30°AD是△ABC的角平分线,
∴∠BAD=B=30°
AD=BD=2CD=4
RtACD中,AC=

∴△ABD的面积为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若关于的不等式组有三个整数解,且关于的分式方程有整数解,则满足条件的所有整数的和是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDEFABCD分别交于点GH,∠CHG的平分线HMAB于点M,若∠EGB50°,则∠GMH的度数为(  )

A. 50°B. 55°C. 60°D. 65°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,A点坐标为(-22).

⑴如图⑴,在△ABO为等腰直角三角形,求B点坐标.

⑵如图⑴,在⑴的条件下,分别以ABOB为边作等边△ABC和等边△OBD,连结OC,求∠COB的度数.

⑶如图⑵,过点AAMy轴于点M,点Ex轴正半轴上一点,KME延长线上一点,以MK为直角边作等腰直角三角形MKJ,∠MKJ=90°,过点AANx轴交MJ于点N,连结EN.则①的值不变;②的值不变,其中有且只有一个结论正确,请判断出正确的结论,并加以证明和求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:∠BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直角三角板和直角三角板,,,

.

(1)如图1,将顶点和顶点重合,保持三角板不动,将三角板绕点旋转.平分,的度数;

(2)(1)的条件下,继续旋转三角板,猜想有怎样的数量关系?并利用图2所给的情形说明理由;

(3)如图3,将顶点和顶点重合,保持三角板不动,将三角板绕点旋转.落在内部时,直接写出的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线y=﹣x+bx轴、y轴相交于AB两点,动点Cm0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点DDEx轴于点E

1)求mb的数量关系;

2)当m1时,如图2,将BCD沿x轴正方向平移得BCD,当直线BC经过点D时,求点B的坐标及BCD平移的距离;

3)在(2)的条件下,直线AB上是否存在一点P,以PCD为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表:

多面体

顶点数

面数

棱数

四面体

4

4

6

长方体

8

6

正八面体

8

12

现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)发现:

如图1,点A为线段BC外一动点,且BC=aAB=b

填空:当点A位于     时,线段AC的长取得最大值,且最大值为     (用含ab的式子表示)

(2)应用:

A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以ABAC为边,作等边三角形ABD和等边三角形ACE,连接CDBE

①请找出图中与BE相等的线段,并说明理由;

②直接写出线段BE长的最大值.

(3)拓展:

如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.

查看答案和解析>>

同步练习册答案