【题目】如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2 .
(1)在图中画出△A1B1C1和△A2B2C2 ;
(2)点A2的坐标为 ;
(3)求△ABC的周长.
【答案】(1)见解析;(2)(2,-3);(3)+
+
.
【解析】
(1)首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2;
(2)结合平移的性质以及关于x轴对称点的性质得出答案;
(3)根据勾股定理分别求出AB、BC、AC的长,再根据三角形周长的定义即可求解.
解:(1)如图所示:△A1B1C1、△A2B2C2即所求作的三角形;
(2)∵点A的坐标是(﹣2,3),将点A向右平移4个单位长度得到点A1;
∴A1(2,3),
∵点A1、A2关于x轴对称,
∴点A2的坐标为:(2,-3);
(3)由题意可得:AB==
,
AC==
,
BC==
,
则△ABC的周长为:+
+
.
科目:初中数学 来源: 题型:
【题目】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将绕点
逆时针旋转
得到
,
的延长线与
相交于点
,连接
、
.
如图
,若
,
.
①求证:;②猜想线段
、
的数量关系,并证明你的猜想;
如图
,若
,
(
为常数),求
的值(用含
、
的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别在正△ABC的边AB,BC上,且BD=CE,CD,AE交于点F.
(1)①求证:△ACE≌△CBD;②求∠AFD的度数;
(2)如图2,若D,E,M,N分别是△ABC各边上的三等分点,BM,CD交于Q.若△ABC的面积为S,请用S表示四边形ANQF的面积 ;
(3)如图3,延长CD到点P,使∠BPD=30°,设AF=a,CF=b,请用含a,b的式子表示PC长,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子,柱子顶端
处装上喷头,由
处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知
米,喷出的水流的最高点
距水平面的高度是
米,离柱子
的距离为
米.
求这条抛物线的解析式;
若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中,
,点
为
三条角平分线的交点,
于
,
于
,
于
,且
,
,
,则点
到三边
、
、
的距离为( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,中,
,
,
.
点
从点
开始沿
边向
以
的速度移动,点
从
点开始沿
边向点
以
的速度移动.如果
、
分别从
,
同时出发,线段
能否将
分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
若
点沿射线
方向从
点出发以
的速度移动,点
沿射线
方向从
点出发以
的速度移动,
、
同时出发,问几秒后,
的面积为
?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,以点B为圆心,适当长为半径画弧,与∠ABC的两边相交于点E,F,分别以点E和点F为圆心,大于EF的长为半径画弧,两弧相交于点M,作射线BM,交AC于点D.若△BDC的面积为10,∠ABC=2∠A,则△ABC的面积为( )
A.25B.30C.35D.40
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com