【题目】中,,点为三条角平分线的交点,于,于,于,且,,,则点到三边、、的距离为( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
【答案】A
【解析】
由角平分线的性质可得OE=OF=OD,AE=AF,CE=CD,BD=BF,设OE=OF=OD=x,则CE=CD=x,BD=BF=8-x,AF=AE=6-x,所以6-x+8-x=10,由此即可解答.
如图,连接OB,
∵点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,
∴OE=OF=OD,
又∵OB是公共边,
∴Rt△BOF≌Rt△BOD(HL),
∴BD=BF,
同理,AE=AF,CE=CD,
∵∠C=90°,OD⊥BC,OE⊥AC,OF⊥AB,OD=OE,
∴OECD是正方形,
设OE=OF=OD=x,则CE=CD=x,BD=BF=8-x,AF=AE=6-x,
∴BF+FA=AB=10,即6-x+8-x=10,
解得x=2.
则OE=OF=OD=2.
故选A.
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,延长AB到点E,连接EC,使得∠BCE=∠BAC
(1)求证:EC是⊙O的切线;
(2)过点A作AD⊥EC的延长线于点D,若AD=5,DE=12,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边上有一点(点不与点、点重合),过点作直线截,使截得的三角形与相似,满足条件的直线共有( )
A. 2条 B. 3条 C. 4条 D. 5条
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2 .
(1)在图中画出△A1B1C1和△A2B2C2 ;
(2)点A2的坐标为 ;
(3)求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点,与轴交于点、,点坐标为.
求该抛物线的解析式;
抛物线的顶点为,在轴上找一点,使最小,并求出点的坐标;
点是线段上的动点,过点作,交于点,连接.当的面积最大时,求点的坐标;
若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为.问:是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.
(1)填空:A的坐标是_______,B的坐标是___________;
(2)直线y=﹣x+上有点P(m,n),且点P在第四象限,设△AOP的面积为S,请求出S与m的函数关系式;
(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:把形如的二次三项式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本形式是完全平方公式的逆运用,即.
例如:________
________
________.
以上是的三种不同形式的配方(即“余项”分别是常数、一次项、二次项–见横线上的部分).根据阅读材料解决以下问题:
仿照上面的例子,写出三种不同形式的配方;
将配方(至少写出两种形式);
已知,求、、的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com