【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.
(1)填空:A的坐标是_______,B的坐标是___________;
(2)直线y=﹣x+上有点P(m,n),且点P在第四象限,设△AOP的面积为S,请求出S与m的函数关系式;
(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.
【答案】(1)A(1,1),B(3,0);(2)S=;(3)存在,D(﹣,﹣),D(,),D(3,3)或D(,).
【解析】
(1)把直线y=-x+与y=x联立得出方程组求解即可得出点A的坐标,由直线y=-x+与x轴交于点B,令y=0,求出x的值,即可得出B的坐标;
(2)根据S = S△AOB+ S△POB即可解答;
(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,分四种情况①当OB=OD时,②当OD=OB时,③当OB=DB时,④当DO=DB时分别求解即可.
解:(1)∵直线y=﹣x+与y=x相交于点A,
∴联立得 ,解得,
∴点A(1,1),
∵直线y=﹣x+与x轴交于点B,
∴令y=0,得﹣x+=0,解得x=3,
∴B(3,0).
(2)S=S△AOB+S△OBP=
(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,
①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E
∵OB=3,点D在OA上,∠DOE=45°
∴DE=OE=,
∴D(﹣,﹣),
②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E
∵OB=3,点D在OA上,∠DOE=45°
∴DE=OE=,
∴D(,),
③如图6,当OB=DB时,
∵∠AOB=∠ODB=45°,
∴DB⊥OB,
∵OB=3,
∴D(3,3),
④如图7,当DO=DB时,作DE⊥x轴,交x轴于点E
∵∠AOB=∠OBD=45°,
∴OD⊥DB,
∵OB=3,
∴OE=,AE=,
∴D(,).
综上所述,在直线OA上,存在点D(﹣,﹣),D(,),D(3,3)或D(,),使得△DOB是等腰三角形.
科目:初中数学 来源: 题型:
【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查每个被调查的学生必须选择而且只能选择其中一门对调查结果进行整理,绘制成如下两幅不完整的统计图请结合图中所给信息解答下列问题:
本次调查的学生共有______人,在扇形统计图中,m的值是______.
分别求出参加调查的学生中选择绘画和书法的人数,并将条形统计图补充完整.
该校共有学生2000人,估计该校约有多少人选修乐器课程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中,,点为三条角平分线的交点,于,于,于,且,,,则点到三边、、的距离为( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,连接AC.
(1)求AC的长度.
(2)求证△ACD是直角三角形.
(3)求四边形ABCD的面积?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,中,,,.
点从点开始沿边向以的速度移动,点从点开始沿边向点以的速度移动.如果、分别从,同时出发,线段能否将分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
若点沿射线方向从点出发以的速度移动,点沿射线方向从点出发以的速度移动,、同时出发,问几秒后,的面积为?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= ______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA-AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),求在这一运动过程中y与x之间函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com