【题目】如图,抛物线与轴交于点,对称轴为,则下列结论中正确的是( )
A.
B. 当时,随的增大而增大
C.
D. 是一元二次方程的一个根
【答案】D
【解析】
根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.
A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;
B、当x>1时,y随x的增大而减小,故本选项错误;
C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;
D、∵抛物线与x轴的一个交点坐标是(1,0),对称轴是x=1,
设另一交点为(x,0),
1+x=2×1,
x=3,
∴另一交点坐标是(3,0),
∴x=3是一元二次方程ax2+bx+c=0的一个根,
故本选项正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上
(1)画出△ABC关于y轴对称的△A1B1C1;写出A1、B1、C1的坐标。
(2)画出△ABC向下平移5个单位后的△A2B2C2,并求出平移过程中线段AC扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与轴的正半轴交于点,与轴交于点,的面积为2,动点从点出发,以每秒1个单位长度的速度在射线上运动,动点从出发,沿轴的正半轴与点同时以相同的速度运动,过作轴交直线于.
(1)求直线的解析式.
(2)当点在线段上运动时,设的面积为,点运动的时间为秒,求与的函数关系式(直接写出自变量的取值范围).
(3)过点作轴交直线于,在运动过程中(点不与点重合),是否存在某一时刻(秒),使是等腰三角形?若存在,求出时间的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边上有一点(点不与点、点重合),过点作直线截,使截得的三角形与相似,满足条件的直线共有( )
A. 2条 B. 3条 C. 4条 D. 5条
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图某种三角形台历被放置在水平桌面上,其左视图如图,其中点是台历支架、的交点,同时又是台历顶端连接日历的螺旋线圈所在圆的圆心.现测得,,.
求点到直线的距离;
求张角的大小;
现把某月的日历从台历支架正面翻到背面(即与重合),求点所经历的路径长.
(参考数据:,,,,取,所有结果精确到,可使用科学计算器)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2 .
(1)在图中画出△A1B1C1和△A2B2C2 ;
(2)点A2的坐标为 ;
(3)求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点,与轴交于点、,点坐标为.
求该抛物线的解析式;
抛物线的顶点为,在轴上找一点,使最小,并求出点的坐标;
点是线段上的动点,过点作,交于点,连接.当的面积最大时,求点的坐标;
若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为.问:是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.
(1)填空:A的坐标是_______,B的坐标是___________;
(2)直线y=﹣x+上有点P(m,n),且点P在第四象限,设△AOP的面积为S,请求出S与m的函数关系式;
(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明去离家2.4 km的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min,于是他立即步行(匀速)回家取票,在家取票用时2 min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.
(1)小明步行的速度是多少?
(2)小明能否在球赛开始前赶到体育馆?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com