【题目】如图,抛物线与轴交于点,与轴交于点、,点坐标为.
求该抛物线的解析式;
抛物线的顶点为,在轴上找一点,使最小,并求出点的坐标;
点是线段上的动点,过点作,交于点,连接.当的面积最大时,求点的坐标;
若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为.问:是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1);(2)点的坐标为;(3);(4)的坐标为:或或或.
【解析】
(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;
(2)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;
(3)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;
(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.
∵抛物线经过点,,
∴,解得,
∴抛物线解析式为;
由可求得抛物线顶点为,
如图,作点关于轴的对称点,连接交轴于点,则点即为所求,
设直线的解析式为,
把、点坐标代入可得,解得,
∴直线的解析式为,
令,解得,
∴点的坐标为;
设点,过点作轴于点,如图,
由,得,,
∴点的坐标为,,,
又∵,
∴,
∴,即,
解得;
∴.
又∵,
∴当时,有最大值,此时;
存在.在中,
若,∵,,
∴.
又在中,,
∴.
∴.
∴.
此时,点的坐标为.
由,得,.
此时,点的坐标为:或;
若,过点作轴于点.
由等腰三角形的性质得:,
∴.
∴在等腰直角中,.
∴.
由,得,.
此时,点的坐标为:或;
若,
∵,且.
∴.
∴点到的距离为.
而,与矛盾.
∴在上不存在点使得.
此时,不存在这样的直线,使得是等腰三角形.
综上所述,存在这样的直线,使得是等腰三角形.所求点的坐标为:或或或.
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:(1)BD=AE.(2)若线段AD=5,AB=17,求线段ED的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC于点F,且DF=EF.
(1)求证:CD=BE;
(2)若AB=12,试求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图是二次函数的图象,其顶点坐标为.
求出图象与轴的交点,的坐标;
在二次函数的图象上是否存在点,使?若存在,求出点的坐标;若不存在,请说明理由;
将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中,,点为三条角平分线的交点,于,于,于,且,,,则点到三边、、的距离为( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,连接AC.
(1)求AC的长度.
(2)求证△ACD是直角三角形.
(3)求四边形ABCD的面积?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是的角平分线OC上一点,PNOB于点N,点M是线段ON上一点,已知OM=3,ON=4,点D为OA上一点,若满足PD=PM,则OD的长度为________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com