精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于AB两点,交y轴于C点,其中B点坐标为(30),C点坐标为(03),且图象对称轴为直线x=1

1)求此二次函数的关系式;

2P为二次函数y=ax2+bx+c图象上一点,且SABP=SABC,求P点的坐标.

【答案】1)二次函数的表达式为y=x2+2x+3;(2P点的坐标为(2,3)或(13)或(1+3).

【解析】试题分析:(1)将BC的坐标和对称轴方程代入抛物线的解析式中,即可求得待定系数的值,可得此二次函数的关系式;

2根据等底等高的三角形的面积相等,可得P的纵坐标与C的纵坐标相等或互为相反数,根据自变量与函数值的对应关系,可得答案.

试题解析:解:1)根据题意,得 解得

故二次函数的表达式为y=﹣x2+2x+3

2)由SABP=SABC,得yP=3或﹣3,当y=3时,x=2y=﹣3时,﹣x2+2x+3=﹣3

解得x1=x2=

P点的坐标为(23)或(3)或(3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:直线EF分别与直线AB,CD相交于点F,E,EM平分∠FED,ABCDHP分别为直线AB和线段EF上的点。

(1)如图1HM平分∠BHP,若HPEF,求∠M的度数。

(2)如图2,EN平分∠HEFAB于点N,NQEM于点Q,H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由DAM平移得到.若过点E作EHAC,H为垂足,则有以下结论:点M位置变化,使得DHC=60°时,2BE=DM;无论点M运动到何处,都有DM=HM;③无论点M运动到何处,CHM一定大于135°.其中正确结论的序号为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=k0)经过边OB的中点CAE的中点D.已知等边△OAB的边长为4

(1)求该双曲线所表示的函数解析式;

(2)求等边△AEF的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两地相距200km,一列火车从B地出发沿BC方向以的速度行驶,在行驶过程中,这列火车离A地的路程与行驶时间之间的函数关系式是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于AB两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>3.其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,AB9NAB上一点,且AN3BC的高线ADBC于点DMAD上的动点,连结BMMN,则BM+MN的最小值是

A. B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆E是三角形ABC的外接圆, BAC=45°AOBCO,且BO=2CO=3,分别以BCAO所在直线建立x.

1)求三角形ABC的外接圆直径;

2)求过ABC三点的抛物线的解析式;

3)设P是(2)中抛物线上的一个动点,且三角形AOP为直角三角形,则这样的点P有几个?(只需写出个数,无需解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, BAD CAE 90 AB AD AE AC ABD ADB ACE AEC 45 AF CF ,垂足为 F .

1)若 AC 10 ,求四边形 ABCD 的面积;

2)求证: CE 2 AF .

查看答案和解析>>

同步练习册答案