精英家教网 > 初中数学 > 题目详情

【题目】如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA100米,山坡坡度=12,且OAB在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)

【答案】OC100米;PB米.

【解析】

在图中共有三个直角三角形,即RtAOCRtPCFRtPAB,利用60°的三角函数值以及坡度,求出OC,再分别表示出CFPF,然后根据两者之间的关系,列方程求解即可.

解:过点PPFOC,垂足为F

RtOAC中,由∠OAC60°OA100,得OCOAtanOAC100(米),

由坡度=12,设PBx,则AB2x

PFOB100+2xCF100x

RtPCF中,∠CPF45°

PFCF,即100+2x100x

x,即PB米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为更新果树品种,某果园计划新购进两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中种苗的单价为/棵,购买种苗所需费用(元)与购买数量(棵)之间存在如图所示的函数关系.

1)求的函数关系式;

2)若在购买计划中,种苗的数量不超过35棵,但不少于种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位在疫情期间用3000元购进AB两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;

1)求AB两种口罩的单价各是多少元?

2)若计划用不超过7000元的资金再次购进AB两种口罩共2600个,已知AB两种口罩的进价不变,求A种口罩最多能购进多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过点两点,与轴交于点,点是抛物线上一个动点,设点的横坐标为.连接

1)求抛物线的函数表达式;

2的面积何时最大?求出此时点的坐标和最大面积;

3)在(2)的条件下,若点轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线经过原点,交轴正半轴于点,顶点为,对称轴交轴于点

1)如图1,求点的坐标;

2)如图2,点为抛物线在第一象限上一点,连接交对称轴于点,设点的横坐标为的长为,求之间的函数解析式,不要求写出自变量的取值范围;

3)如图3,在(2)的条件下,点上一点,连接,点上一点,连接,若,求点横坐标的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为,四边形ABCD为⊙O的内接矩形,AD=6MDC中点,E为⊙O上的一个动点,连结DE,作DFDE交射线EAF,连结MF,则MF的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解青少年形体情况,现随机抽查了某市若十名初中学生坐必、站姿.走安的好坏情况我们对测评数据作了适当处理(如果一个学生有一种以上:不良姿势.以他最突出的一种作记载) ,并将统计结果绘制了如下两幅不完整的统计图.请你根据图中所给信息解答下列问题:

求这次抽查一共抽查了多少名学生;

请将条形统计图补充完整;

如果全市有万名初中生,那么全市初中生中,三姿良好的学生约有多少名

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykxb的图象与反比例函数y (x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点CPBx轴于点B,点A与点B关于y轴对称.

(1)求一次函数、反比例函数的解析式;

(2)求证:点C为线段AP的中点;

(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形,如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,ABCD的边ABx轴上,顶点Dy轴的正半轴上,点C在第一象限,将AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DEBC交于点F.若yk≠0)图象经过点C,且SBEF1,则k的值为________

查看答案和解析>>

同步练习册答案