【题目】如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=_____.
【答案】
【解析】如图,作AE⊥BH于E,BF⊥AH于F,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH的长.
作AE⊥BH于E,BF⊥AH于F,如图,
∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°,
∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,
∴∠ABH=∠CAH,
在△ABE和△CAH中,
∴△ABE≌△CAH,
∴BE=AH,AE=CH,
在Rt△AHE中,∠AHE=∠BHD=60°,
∴sin∠AHE=,HE=AH,
∴AE=AHsin60°=AH,
∴CH=AH,
在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,
∴BE=2,HE=1,AE=CH=,
∴BH=BE﹣HE=2﹣1=1,
在Rt△BFH中,HF=BH=,BF=,
∵BF∥CH,
∴△CHD∽△BFD,
∴=2,
∴DH=HF=×=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
(1)求证:四边形CODE是矩形.
(2)若AB=5,AC=6,求四边形CODE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数(k≠0)的图象经过点C,一次函数y=ax+b(a≠0)的图象经过A、C两点.
(1)求反比例函数与一次函数的表达式;
(2)若点P是反比例函数(k≠0)图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC 中,∠ACB=90°,AC=6cm,∠ABC=30°,动点 P 从点 B 出发,在 BA 边上以每秒 2cm 的速度向点 A 匀速运动,同时动点 Q 从点 C 出发,在 CB 边上以每秒cm 的速度向点 B 匀速运动,运动时间为 t 秒(0≤t≤6),连接 PQ,以 PQ 为直径作⊙O.
(1)当 t=1 时,求△BPQ 的面积;
(2)设⊙O 的面积为 y,求 y 与 t 的函数解析式;
(3)若⊙O 与 Rt△ABC 的一条边相切,求 t 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地发生8.1级地震,震源深度20千米.救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,已知顶点为P(0,2)的二次函数图象与x轴交于A,B两点,点A的坐标为(2,0).
(1)求该二次函数的解析式,并写出点B的坐标;
(2)点C在该二次函数的图象上,且在第四象限,当△ABC的面积为12时,求点C的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,和的平分线相交于点,过点作交于点,交于点,过点作于点,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )
A.B.点到各边的距离相等
C.D.设,,则
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,作出边长为1的菱形ABCD,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…按此规律所作的第2017个菱形的边长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com