精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,AHC=90°时,DH=_____

【答案】

【解析】如图,作AEBHE,BFAHF,利用等边三角形的性质得AB=AC,BAC=60°,再证明∠ABH=CAH,则可根据“AAS”证明ABE≌△CAH,所以BE=AH,AE=CH,在RtAHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在RtAHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在RtBFH中计算出HF=,BF=,然后证明CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH的长.

AEBHE,BFAHF,如图,

∵△ABC是等边三角形,

AB=AC,BAC=60°,

∵∠BHD=ABH+BAH=60°,BAH+CAH=60°,

∴∠ABH=CAH,

ABECAH

∴△ABE≌△CAH,

BE=AH,AE=CH,

RtAHE中,∠AHE=BHD=60°,

sinAHE=,HE=AH,

AE=AHsin60°=AH,

CH=AH,

RtAHC中,AH2+(AH)2=AC2=(2,解得AH=2,

BE=2,HE=1,AE=CH=

BH=BE﹣HE=2﹣1=1,

RtBFH中,HF=BH=,BF=

BFCH,

∴△CHD∽△BFD,

=2,

DH=HF=×=

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于点O,过点CCE∥BD,过点DDE∥ACCEDE相交于点E

1)求证:四边形CODE是矩形.

2)若AB=5AC=6,求四边形CODE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCD为正方形A坐标为(0,1),B坐标为(0,﹣2),反比例函数k≠0)的图象经过点C一次函数yax+ba≠0)的图象经过AC两点

(1)求反比例函数与一次函数的表达式

(2)若点P是反比例函数k≠0)图象上的一点,△OAP的面积恰好等于正方形ABCD的面积P点的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 Rt△ABC 中,∠ACB=90°,AC=6cm,∠ABC=30°,动点 P 从点 B 出发,在 BA 边上以每秒 2cm 的速度向点 A 匀速运动,同时动点 Q 从点 C 出发,在 CB 边上以每秒cm 的速度向点 B 匀速运动,运动时间为 t (0≤t≤6),连接 PQ,以 PQ 为直径作⊙O.

(1) t=1 时,求△BPQ 的面积;

(2)⊙O 的面积为 y,求 y t 的函数解析式;

(3)⊙O Rt△ABC 的一条边相切,求 t 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?

(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地发生8.1级地震,震源深度20千米.救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系xOy中,已知顶点为P(0,2)的二次函数图象与x轴交于AB两点,点A的坐标为(2,0).

(1)求该二次函数的解析式,并写出点B的坐标;

(2)点C在该二次函数的图象上,且在第四象限,当△ABC的面积为12时,求点C的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的平分线相交于点,过点于点,交于点,过点于点,某班学生在一次数学活动课中,探索出如下结论,其中错误的是(

A.B.各边的距离相等

C.D.,则

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,作出边长为1的菱形ABCD,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…按此规律所作的第2017个菱形的边长为_____

查看答案和解析>>

同步练习册答案