【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0, ),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.
【答案】(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.
【解析】试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;
(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;
(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.
试题解析:(1)∵点B是点A关于y轴的对称点,
∴抛物线的对称轴为y轴,
∴抛物线的顶点为(0,),
故抛物线的解析式可设为y=ax2+.
∵A(﹣1,2)在抛物线y=ax2+上,
∴a+=2,
解得a=﹣,
∴抛物线的函数关系表达式为y=﹣x2+;
(2)①当点F在第一象限时,如图1,
令y=0得,﹣x2+=0,
解得:x1=3,x2=﹣3,
∴点C的坐标为(3,0).
设直线AC的解析式为y=mx+n,
则有,
解得,
∴直线AC的解析式为y=﹣x+.
设正方形OEFG的边长为p,则F(p,p).
∵点F(p,p)在直线y=﹣x+上,
∴﹣p+=p,
解得p=1,
∴点F的坐标为(1,1).
②当点F在第二象限时,
同理可得:点F的坐标为(﹣3,3),
此时点F不在线段AC上,故舍去.
综上所述:点F的坐标为(1,1);
(3)过点M作MH⊥DN于H,如图2,
则OD=t,OE=t+1.
∵点E和点C重合时停止运动,∴0≤t≤2.
当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.
当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.
在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.
在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,
∴MN2=12+()2=.
①当DN=DM时,
(﹣t+)2=t2﹣t+2,
解得t=;
②当ND=NM时,
﹣t+=,
解得t=3﹣;
③当MN=MD时,
=t2﹣t+2,
解得t1=1,t2=3.
∵0≤t≤2,∴t=1.
综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分。某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )
A. y=﹣(x﹣1)2﹣3 B. y=﹣(x+1)2﹣3 C. y=﹣(x﹣1)2+3 D. y=﹣(x+1)2+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,正确的是( )
A. 平行四边形的对角线相等
B. 矩形的对角线互相垂直
C. 菱形的对角线互相垂直且平分
D. 对角线相等的四边形是矩形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com