【题目】如图,在反比例函数y=﹣的图象上有一点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,若tan∠CAB=3,则k=_____.
【答案】18
【解析】
作出辅助线利用三线合一性质得到∠EAO=∠COD,证明△AEO∽△ODC, 在Rt△AOC中, 设C(m,n),进而表示出点A,根据tan∠CAB=3,即可求解.
如图所示,连接CO,作AE⊥x轴交于点E,作CD⊥x轴交于点D.
∵AE⊥x轴,
∴∠AEO=90°,∠EAO+∠AOE=90°,
∵AC=BC,
∴△ABC为等腰三角形,根据等腰三角形三线合一可得,CO⊥AB,
∴∠BOC=90°,∠COD+∠BOD=90°,
∵∠AOE=∠BOD
∴∠EAO=∠COD.
在△AEO和△ODC中,∠EAO=∠DOC,∠AEO=∠ODC,
∴△AEO∽△ODC,在Rt△AOC中,tan∠CAB== 3,
∴,设C(m,n),则有OD=m、CD=n,解得OE=n,AE=m,
∴A(n,m),
∵点A在y=﹣上,
∴m=﹣,整理得:mn=18
∵点C在y=上运动,
∴k=xy=mn=18.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点P是AB的中点,的延长线于点E,连接AE,过点A作交DP于点F,连接BF、下列结论中:≌;;是等边三角形;;其中正确的是
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAD=∠BAC,过点D作DE⊥AB,DE恰好是∠ADB的平分线.
求证:(1)AD=BD;
(2)CD=DB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:对角线互相垂直的四边形叫做垂美四边形.
(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;
(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.
①求证:四边形BCGE是垂美四边形;
②若AC=4,AB=5,求GE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
汽车在行驶中,由于惯性作用,刹车后,还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.在一个限速千米/小时以内的弯道上,甲、乙两车相向而行,发现情况不对后同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为米,乙车的刹车距离超过米,但小于米.查有关资料知,甲车的刹车距离(米)与车速(千米/小时)的关系为;乙车的刹车距离(米)与车速(千米/小时)的关系如右图所示.请你就两车的速度方面分析这起事故是谁的责任.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,以△ABC的边AB为直径作⊙O,交AC边于点E,BD平分∠ABE交AC于F,交⊙O于点D,且∠BDE=∠CBE.
(1)求证:BC是⊙O的切线;
(2)延长ED交直线AB于点P,如图2,若PA=AO,DE=3,DF=2,求的值及AO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣6 | 0 | 4 | 6 | 6 | … |
给出下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴在y轴的左侧;
③抛物线一定经过(3,0)点;
④在对称轴左侧y随x的增大而减增大.
从表中可知,其中正确的个数为( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com