【题目】如图,对称轴为直线的抛物线与轴交于、两点,与轴交于点,其中点的坐标为
求该抛物线的解析式;
若点在抛物线上,且,求点的坐标;
设点是线段上的动点,作轴交抛物线于点,求线段长度的最大值.
科目:初中数学 来源: 题型:
【题目】如图,已知于,于,要计算,两地的距离,甲、乙、丙、丁四组同学分别测量了部分线段的长度和角的度数,得到以下四组数据:甲:,;乙:,,;丙:和;丁:,,.其中能求得,两地距离的有( )
A. 1组 B. 2组 C. 3组 D. 4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AD为△ABC的中线,延长AD至E,使DE=AD.
(1)试证明:△ACD≌△EBD;
(2)用上述方法解答下列问题:如图2,AD为△ABC的中线,BMI交AD于C,交AC于M,若AM=GM,求证:BG=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于抛物线.
对于抛物线.
它与轴交点的坐标为________,与轴交点的坐标为________,顶点坐标为________.
在所给的平面直角坐标系中画出此时抛物线;
结合图象回答问题:当时,的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有【 】
A.1组 B.2组 C.3组 D.4组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)已知∠MAN=135°,正方形ABCD绕点A旋转.
(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.
①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是 ;
②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形可看成是分别以、、、为位似中心将正方形放大一倍得到的图形(正方形的边长放大到原来的倍),由正方形到正方形,我们称之作了一次变换,再将正方形作一次变换就得到正方形,…,依此下去,作了次变换后得到正方形,若正方形的面积是,那么正方形的面积是多少( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com