【题目】如图,∠AOB=90°,∠BOC=30°,C在∠AOB外部,OM平分∠AOC,ON平分∠BOC. 则∠MON= 度.
(1)若∠AOB=α,其他条件不变,则∠MON= 度.
(2)若∠BOC=β(β为锐角),其他条件不变,则∠MON= 度.
(3)若∠AOB=α且∠BOC=β(β为锐角),求∠MON的度数(请在图2中画出示意图并解答)
【答案】45°;(1)α;(2)45°;(3)α
【解析】
(1)先根据已知条件表示∠AOC的度数,再根据角平分线的性质即可得出∠MOC、∠NOC的度数,由∠MON=∠MOC-∠NOC即可得出结论;
(2)先根据已知条件表示∠AOC的度数,再根据角平分线的性质即可得出∠MOC、∠NOC的度数,由∠MON=∠MOC-∠NOC即可得出结论;
(3)先根据已知条件表示∠AOC的度数,再根据角平分线的性质即可得出∠MOC、∠NOC的度数,由∠MON=∠MOC-∠NOC即可得出结论.
解:∵∠AOB=90°,∠BOC=30°,
∴∠AOC=∠AOB+∠BOC=90°+30°=120°,
又∵OM为∠AOC平分线,ON为∠BOC平分线,
∴∠MOC=∠AOC=×120°=60°,
∠NOC=∠BOC=×30°=15°,
∴∠MON=∠MOC-∠NOC=60°-15°=45°;
故答案为:45°.
(1)∵∠AOB=α°,∠BOC=30°,
∴∠AOC=∠AOB+∠BOC=α+30°,
又∵OM为∠AOC平分线,ON为∠BOC平分线,
∴∠MOC= ∠AOC=×(α+30°)= α+15°,
∠NOC=∠BOC=×30°=15°,
∴∠MON=∠MOC-∠NOC=α+15°-15°=α;
故答案为:α.
(2)当∠BOC=β时.
∵∠AOB=90°,∠BOC=β,
∴∠AOC=∠AOB+∠BOC=β+90°,
又∵OM为∠AOC平分线,ON为∠BOC平分线,
∴∠MOC= ∠AOC=×(β+90°)=β+45°,
∠NOC=∠BOC=β,
∴∠MON=∠MOC-∠NOC= β+45°-β=45°;
故答案为:45°.
(3)如图所示:
∵∠AOB=α,∠BOC=β,
∴∠AOC=∠AOB+∠BOC=β+α,
又∵OM为∠AOC平分线,ON为∠BOC平分线,
∴∠MOC= ∠AOC=×(β+α)=β+ α,
∠NOC=∠BOC=β,
∴∠MON=∠MOC-∠NOC=β+ α- β=α.
科目:初中数学 来源: 题型:
【题目】把y=ax+b(其中a、b是常数,x、y是未知数)这样的方程称为“雅系二元一次方程”.当y=x时,“雅系二元一次方程y=ax+b”中x的值称为“雅系二元一次方程”的“完美值”.例如:当y=x时,“雅系二元一次方程”y=3x﹣4化为x=3x﹣4,其“完美值”为x=2.
(1)求“雅系二元一次方程”y=5x+6的“完美值”;
(2)x=3是“雅系二元一次方程”y=3x+m的“完美值”,求m的值;
(3)“雅系二元一次方程”y=kx+1(k≠0,k是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE, 交 AC于点F.
(1)如图①,当时,求的值;
(2)如图②当DE平分∠CDB时,求证:AF=OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学开展以“我最喜爱的传统文化”为主题的调查活动,从“诗词、国画、对联、书法、戏曲”五种传统文化中,选取喜欢的一种(只选一种)进行调查,将调查结果整理后绘制成如图所示的不完整统计图.
(1)本次调查共抽取了多少名学生?
(2)喜欢“书法”的有多少名学生?并补全条形统计图;
(3)求喜欢“国画”对应扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作思考:如图1,在平面直角坐标系中,等腰的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点处则的长为______;点B的坐标为______直接写结果
感悟应用:如图2,在平面直角坐标系中,将等腰如图放置,直角顶点,点,试求直线AB的函数表达式.
拓展研究:如图3,在直角坐标系中,点,过点B作轴,垂足为点A,作轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点问是否存在以点P为直角顶点的等腰,若存在,请求出此时P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的结果是 ;
(2)已知a+b=5(a﹣b),代数式= ;
(3)已知:xy+x=﹣6,y﹣xy=2,求2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com