【题目】如图,点 是以 为直径的 上一点, 于点 ,过点 作 的切线,与 的延长线相交于点 , 是 的中点,连接 并延长与 相交于点 ,延长 与 的延长线相交于点 ,且 .
(1)求证:BF=EF;
(2)求;
(3)求的半径r.
【答案】(1)证明见解析(2)(3)
【解析】
(1)根据AD∥EB得到△CAG∽△CEF,△CGD∽△CFB,根据相似三角形对应边成比例即可得到结论;
(2)求出AH,FH的值,根据tan∠P=tan∠AFH===,即可解决问题;
(3)在Rt△ADO中利用勾股定理即可求出半径.
(1)∵EB 是切线,AD⊥BC,
∴∠EBC=∠ADC=90°,
∴AD∥ EB,
∴△CAG∽△CEF,△CGD∽△CFB,
∴.
∵AG=GD,
∴EF=FB.
(2)连接AB.过点F作FH⊥AG交AG于点H.
∵BC 是直径,
∴∠BAC=∠BAE=90°.
∵EF=FB,
∴FA=FB=FE=FG=3(直角三角形斜边上的中线等于斜边的一半).
∵FA=FG,FH⊥AG,
∴AH=HG.
∵∠FBD=∠BDH=∠FHD=90°,
∴ 四边形 FBDH 是矩形,
∴FB=DH=3.
∵AG=GD,
∴AH=HG=1,GD=2,FH=.
∵FH∥PD,
∴∠AFH=∠APD,
∴tanP=tan∠AFH=.
(3)设半径为 r,在 Rt△ADO 中,
∵,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=-x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点B的坐标为(-1,0)
(1)求抛物线的解析式;
(2)点D的坐标为(0,1),点P是抛物线上的动点,若△PCD是以CD为底的等腰三角形,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市红领服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如表所示:
时间t(天) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
日销售量yt(百件) | 0 | 25 | 40 | 45 | 40 | 25 | 0 |
(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;
(2)网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的关系如图所示.求y2与t的函数关系式,并写出自变量t的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于,若OA=OD=OB=3.
(1)求一次函数与反比例函数的解析式;
(2)观察图象直接写出不等式0<ax+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是 ;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店欲购进 A、B 两种商品,若购进 A 种商品 5 件和 B 种商品 4 件需 300 元;购进 A 种商品 6 件和 B 种商 品 8 件需 440 元.
(1)求 A、B 两种商品每件的进价分别为多少元?
(2)若该商店每销售 1 件 A 种商品可获利 8 元,每销售 1 件 B 种商品可获利 6 元,该商店准备购进 A、B 两种商 品共 50 件,且这两种商品全部售出后总获利超过 344 元,则至少购进多少件 A 商品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ).
A. AB∥DC,AD∥BCB. AB=DC,AD=BC
C. AO=CO,BO=DOD. AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学以致用:问题1:怎样用长为的铁丝围成一个面积最大的矩形?
小学时我们就知道结论:围成正方形时面积最大,即围成边长为的正方形时面积最大为.请用你所学的二次函数的知识解释原因.
思考验证:问题2:怎样用铁丝围一个面积为且周长最小的矩形?
小明猜测:围成正方形时周长最小.
为了说明其中的道理,小明翻阅书籍,找到下面的结论:
在、均为正实数)中,若为定值,则,只有当时,有最小值.
思考验证:证明:、均为正实数)
请完成小明的证明过程:
证明:对于任意正实数、
解决问题:
(1)若,则 (当且仅当 时取“” ;
(2)运用上述结论证明小明对问题2的猜测;
(3)填空:当时,的最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com