精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数yax+bab为常数,a≠0)的图象与x轴,y轴分别交于点AB,且与反比例函数yk为常数,k≠0)的图象在第二象限内交于点C,作CDx轴于,若OAODOB3

1)求一次函数与反比例函数的解析式;

2)观察图象直接写出不等式0ax+b的解集.

【答案】1;(2)﹣3≤x0

【解析】

1)根据已知条件,结合平行线的性质得到CD2OB8,又因为OAODOB3,可求得A30),B04),C(﹣38,再利用待定系数求一次函数与反比例函数的解析式即可;(2)根据C点的坐标为(﹣38),结合图象找到满足条件x的取值范围即可.

1)∵CDOA

DCOB

CD2OB8

OAODOB3

A30),B04),C(﹣38),

AB两点的坐标分别代入yax+b可得

解得

∴一次函数解析式为

∵反比例函数y的图象经过点C

k=﹣24

∴反比例函数的解析式为

2)由题意可知所求不等式的解集即为直线ACx轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段BC(包含C点,不包含B点)所对应的自变量x的取值范围,

C(﹣38),

0<﹣x+4≤的解集为﹣3≤x0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(66),(60),抛物线y=﹣(xm2+n的顶点P在折线OAAB上运动.

1)当点P在线段OA上运动时,抛物线y=﹣(xm2+ny轴交点坐标为(0c).

①用含m的代数式表示n

②求c的取值范围.

2)当抛物线y=﹣(xm2+n经过点B时,求抛物线所对应的函数表达式;

3)当抛物线与△ABO的边有三个公共点时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将平行四边形ABCD绕点D旋转,点C落在BC上的点H处,点B恰好落在点A处,得平行四边形DHAE,若BH=2,CH=3,则DC=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD在平面直角坐标系中,AD6,若OAOB的长是关于x的一元二次方程x27x+120的两个根,且OAOB

1)求的值.

2)若Ex轴上的点,且SAOE,求经过DE两点的直线的解析式,并判断△AOE与△DAO是否相似?

3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以ACFM为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某商品的进价为每件40元.现在的售价是每件60元.每星期可卖出300件.市场调查反映:如调整价格,每涨价一元.每星期要少卖出10件;每降价一元,每星期可多卖出18件.如何定价才能使利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得高1 m的标杆的影长为2 m,则电线杆的高度为________m(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点 是以 为直径的 上一点, 于点 ,过点 的切线,与 的延长线相交于点 的中点,连接 并延长与 相交于点 ,延长 的延长线相交于点 ,且

(1)求证:BF=EF;

(2)

(3)的半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 

(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为2:1,点C2的坐标是   

(3)A2B2C2的面积是   平方单位.

查看答案和解析>>

同步练习册答案