【题目】如图,∠MON=α(0<α<90°),A为OM上一点(不与O重合),点A关于直线ON的对称点为B,AB与ON交于点C,P为直线ON上一点(不与O,C重合)将射线PB绕点P顺时针旋转β角,其中2α+β=180°,所得到的射线与直线OM交于点Q.这个问题中,点的位置和角的大小都不确定,在这里我们仅研究两种特殊情况,一般的情况留给同学们深入探索.
(1)如图1,当α=45°时,此时β=90°,若点P在线段OC的延长线上.
①依题意补全图形;
②求∠PQA﹣∠PBA的值;
(2)如图2,当α=60°,点P在线段CO的延长线上时,用等式表示线段OC,OP,AQ之间的数量关系,并证明.
【答案】(1)①见解析;②45°;(2)AQ=4OC+OP,理由见解析.
【解析】
(1)①依据题意可得图形;
②通过轴对称的性质,旋转的性质,可求AB⊥OP,BP⊥PQ,可得∠PBA=∠OPQ,即可求∠PQA﹣∠PBA的值;
(2)在OQ上截取OD=OP,连接BO,PD,BQ,由题意可得∠BON=∠MON=∠POQ=60°,∠BPQ=β=180°﹣2α=60°,可证点B,点Q,点P,点O四点共圆,可得∠PBQ=∠POQ=60°,∠PBO=∠OQP,由“AAS”可证△BOP≌△QDP,可得DQ=OB=OA=2OC,即可求线段OC,OP,AQ之间的数量关系.
(1)①
②∵点A,点B关于ON对称,∴AB⊥ON,∴∠PBA+∠BPC=90°.
∵∠BPQ=90°,∴∠BPC+∠OPQ=90°,∴∠OPQ=∠PBA.
∵∠PQA=∠O+∠OPQ,∴∠PQA=∠O+∠PBA,∴∠PQA﹣∠PBA=∠O=45°.
(2)AQ=4OC+OP.理由如下:
在OQ上截取OD=OP,连接BO,PD,BQ.
∵∠MON=α=60°,且点A关于直线ON的对称点为B,∴∠BON=∠MON=∠POQ=60°,AO=BO,CO⊥AB,∴∠BOQ=60°,∠CAO=30°,∴AO=2CO.
∵旋转,∴∠BPQ=β=180°﹣2α=60°,∴∠BOQ=∠BPQ=60°,∴点B,点Q,点P,点O四点共圆,∴∠PBQ=∠POQ=60°,∠PBO=∠OQP,∴△PBQ是等边三角形,∴PB=PQ.
∵OD=OP,∠QOP=60°,∴△ODP是等边三角形,∴∠ODP=∠DOP=60°,∴∠BOP=∠PDQ=120°,且BP=PQ,∠OBP=∠OQP,∴△BOP≌△QDP(AAS),∴DQ=OB,∴DQ=OA=2OC,∴AQ=AO+OQ=2CO+OD+PQ=4OC+OP.
科目:初中数学 来源: 题型:
【题目】如图,已知点A,B的坐标分别为(4,0),(3,2).
(1)画出△AOB关于原点O对称的图形△COD;
(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;
(3)点D的坐标是 ,点F的坐标是 ,此图中线段BF和DF的关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】工厂对某种新型材料进行加工,首先要将其加温,使这种材料保持在一定温度范围内方可加工,如图是在这种材料的加工过程中,该材料的温度y(℃)时间x(min)变化的数图象,已知该材料,初始温度为15℃,在温度上升阶段,y与x成一次函数关系,在第5分钟温度达到60℃后停止加温,在温度下降阶段,y与x成反比例关系.
(1)写出该材料温度上升和下降阶段,y与x的函数关系式:
①上升阶段:当0≤x≤5时,y= ;
②下降阶段:当x>5时,y .
(2)根据工艺要求,当材料的温度不低于30℃,可以进行产品加工,请问在图中所示的温度变化过程中,可以进行加工多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin∠AEC的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数(a>0)的图象与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.
(1)求C点坐标,并判断b的正负性;
(2)设这个二次函数的图像的对称轴与直线AC交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC,
①若△BCE的面积为8,求二次函数的解析式;
②若△BCD为锐角三角形,请直接写出OA的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com