【题目】如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
(1)求证:BC为⊙O的切线;
(2)连接AE并延长与BC的延长线交于点G(如图②所示).若AB=,CD=9,求线段BC和EG的长.
【答案】(1)证明见解析(2)
【解析】试题分析:(1)连接OE,OC,即可证明△OEC≌△OEC,根据DE与⊙O相切于点E得到OEC=90°,从而证得∠OBC=90°,则BC是圆的切线.
(2)先求线段BC的长,过D作DF⊥BG于F,则四边形ABFD是矩形,在Rt△DCF中,由切线长定理知AD=DE、CE=BC,利用勾股定理可求得CF的长,设AD=DE=BC,根据CD=9,列出方程即可求出x,△ADE中,由于AD=DE,可得到∠DAE=∠AED=∠CEG,而AD∥BG,根据平行线的内错角相等得到∠G=∠EAD=∠CEG,由此可证得CE=CG=CB,即可求得BG的长.
试题解析:(1)证明:如图1,连接OE,OC;
∵CB=CE,OB=OE,OC=OC
∴△OEC≌△OBC(SSS)
∴∠OBC=∠OEC
又∵DE与⊙O相切于点E
∴∠OEC=90°
∴∠OBC=90°
∴BC为⊙O的切线.
(2)解:如图2,过点D作DF⊥BC于点F,则四边形ABFD是矩形,
∵AD,DC,BG分别切⊙O于点A,E,B
∴DA=DE,CE=CB,
在Rt△DFC中,CF==1,
设AD=DE=BF=x,
则x+x+1=9,
x=4,
∵AD∥BG,
∴∠DAE=∠EGC,
∵DA=DE,
∴∠DAE=∠AED;
∵AD∥BG,
∵∠AED=∠CEG,
∴∠EGC=∠CEG,
∴CG=CE=CB=5,
∴BG=10,
在Rt△ABG中,AG==6,
∵AD∥CG,
∴==,
∴EG=×6=.
科目:初中数学 来源: 题型:
【题目】规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:
(1) 已知,则是隐线的亮点的是 ;
(2) 设是隐线的两个亮点,求方程中的最小的正整数解;
(3)已知是实数, 且,若是隐线的一个亮点,求隐线中的最大值和最小值的和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
①作AC的垂直平分线,交AB于点O,交AC于点D;
②以O为圆心,OA为半径作圆,交OD的延长线于点E.
(2)在(1)所作的图形中,解答下列问题.
①点B与⊙O的位置关系是__;(直接写出答案)
②若DE=2,AC=8,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AB=AC,AC交⊙O于点E,BC交⊙O于点D,F为CE的中点,连接DF.给出以下五个结论:①BD=DC;②AD=2DF;③ ;④DF是⊙O的切线.其中正确结论的个数是:( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在四边形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P从A向点D以1cm/s的速度运动,到点D即停止.点Q从点C向点B以2cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截得两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,若满足下列条件,则一定不是直角三角形的是( )
A.∠A=∠B+∠CB.∠A=∠C-∠B
C.一个外角等于与它相邻的内角D.∠A∶∠B∶∠C=1∶3∶5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.
(1)求证:△DOB∽△ACB;
(2)若AD平分∠CAB,求线段BD的长;
(3)当△AB′D为等腰三角形时,求线段BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com