精英家教网 > 初中数学 > 题目详情

【题目】如图所示,ACABCD的一条对角线,过AC中点O的直线EF分别交ADBC于点EF

1)求证:△AOE≌△COF

2)连接AFCE,当EFAC时,判断四边形AFCE的形状,并说明理由

【答案】(1)详见解析;(2)是菱形;

【解析】

根据菱形判定定理:对角线互相垂直且平分的四边形是菱形

1 证明:∵四边形ABCD是平行四边形,

ADBC,∴∠EAO=FCO

OOA的中点,

OA=OC

在△AOE和△COF中,∠EAO=FCOOA=OCAOE=COF

∴△AOE≌△COFASA);

2 EFAC时,四边形AFCE是菱形;

由(1)中△AOE≌△COF,得

AE=CFOE=OF

∵OA=OCEFAC

∴四边形AFCE是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有20箱苹果,以每箱25千克为标准,超过的千克数用正数表示,不足的千克数用负数表示,结果记录如表:

120箱苹果中,最重的一箱比最轻的一箱重   kg

2)与标准质量相比,20箱苹果总计超过或不足多少千克?

3)若苹果每千克售价12元,则售出这20箱苹果可获得多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(背景知识)

数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点、点表示的数分别为,则两点之间的距离,线段的中点表示的数为.

(问题情境)

如图,数轴上点表示的数为,点表示的数为8,点从点出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点从点出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为秒(.

(综合运用)

1)填空:

两点之间的距离________,线段的中点表示的数为__________.

②用含的代数式表示:秒后,点表示的数为____________;点表示的数为___________.

③当_________时,两点相遇,相遇点所表示的数为__________.

2)当为何值时,.

3)若点的中点,点的中点,点在运动过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请求出线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),

(1)设商场购进碳酸饮料y箱,直接写出yx的函数关系式;

(2)求总利润W关于x的函数关系式;

(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,E,F分别是AB,CD的中点,则图中有(  )个平行四边形.

A. 7个 B. 8个 C. 9个 D. 10个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[﹣2.1]=﹣3.则下列结论:

[﹣x]=﹣[x];

②若[x]=n,则x的取值范围是n≤x<n+1;

③当﹣1<x<1时,[1+x]+[1﹣x]的值为12;

x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.

其中正确的结论有_____(写出所有正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市城市居民用电收费方式有以下两种:

(甲)普通电价:全天0.53元/度;

(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.

估计小明家下月总用电量为200度,

⑴若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?

⑵请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?

⑶到下月付费时, 小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(1)班同学到野外上数学活动课,为测量池塘两端AB的距离,设计了如下方案:

(Ⅰ)如图5-1,先在平地上取一个可直接到达AB的点C,连接ACBC,并分别延长ACDBCE,使DC=ACEC=BC,最后测出DE的距离即为AB的长;

(Ⅱ)如图5-2,先过B点作AB的垂线BF,再在BF上取CD两点使BC=CD,接着过DBD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.

阅读后1回答下列问题:

1)方案(Ⅰ)是否可行?说明理由.

2)方案(Ⅱ)是否可行?说明理由.

3)方案(Ⅱ)中作BFABEDBF的目的是 ;若仅满足∠ABD=BDE90°, 方案(Ⅱ)是否成立? .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.

(1)排球和足球的单价各是多少元?

(2)若恰好用去1200元,有哪几种购买方案?

查看答案和解析>>

同步练习册答案