分析 先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
解答 解:原式=$\frac{2-x}{(x+1)(x-1)}$+$\frac{x+1}{(x+1)(x-1)}$
=$\frac{2-x+x+1}{(x+1)(x-1)}$
=$\frac{3}{(x+1)(x-1)}$,
当x=$\sqrt{3}$+1时,
原式=$\frac{3}{(\sqrt{3}+1+1)(\sqrt{3}+1-1)}$
=$\frac{3}{\sqrt{3}(\sqrt{3}+2)}$
=$\frac{3}{3+2\sqrt{3}}$
=$\frac{3(3-2\sqrt{3})}{(3+2\sqrt{3})(3-2\sqrt{3})}$
=2$\sqrt{3}$-3.
点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\sqrt{7}$ | C. | 3 | D. | $\sqrt{3}+1$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{2}×\sqrt{3}=\sqrt{6}$ | B. | $2\sqrt{2}+3\sqrt{2}=5\sqrt{2}$ | C. | $\frac{1}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{{{(\sqrt{2}-\sqrt{3})}^2}}=\sqrt{2}-\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com