精英家教网 > 初中数学 > 题目详情

【题目】如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.

【答案】4

【解析】

过点CCEAB于点E,则人离墙的距离为CE, RtACE中,根据勾股定理列式计算即可得到答案.

如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,

过点CCEAB于点E,则人离墙的距离为CE,

由题意可知AE=AB-BE=4.5-1.5=3(米).

当人离传感器A的距离AC=5米时,灯发光.

此时,在RtACE中,根据勾股定理可得,

CE2=AC2-AE2=52-32=42

CE=4.

即人走到离墙4米远时,灯刚好发光.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,ADBC于点D,BEAC于点E,且DF=DC。

(1)求证:BD=AD;

(2)AF=1,DC=3,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,AB=6,AD⊥BC于点D.点P在边AB上运动,过点P作PE∥BC,与边AC交于点E,连接ED,以PE、ED为邻边作平行四边形PEDF.设线段AP的长为x(0<x<6).

(1)求线段PE的长.(用含x的代数式表示)
(2)当四边形PEDF为菱形时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(12)B(31)C(-2-1).

1)在图中作出关于轴对称的.

2)写出点的坐标(直接写答案).

A1_____________B1______________C1______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )

A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(如图1,等边△ABC中,DAB边上的点,以CD为一边,向上作等边△EDC,连接AE.

(1)求证:△DBC≌△EAC;

(2)求证:AE∥BC;

(3)如图2, D在边BA的延长线上,AB=6,AD=2,试求△ABC与△EAC面积的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.

(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:△ADE∽△DCF;
(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时, 成立?并证明你的结论;
(3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,请直接写出 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组 有整数解,且点(a,b)落在双曲线 上的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,△ABC是直角三角形,∠ACB=90°,点B、C都在第一象限内,CA⊥x轴,垂足为点A,反比例函数y1= 的图象经过点B;反比例函数y2= 的图象经过点C( ,m).

(1)求点B的坐标;
(2)△ABC的内切圆⊙M与BC,CA,AB分别相切于D,E,F,求圆心M的坐标.

查看答案和解析>>

同步练习册答案