【题目】如图,将Rt△ABC平移到△A′B′C′的位置,其中∠C=90°,使得点C′与△ABC的内心重合,已知AC=4,BC=3,则阴影部分的周长为( )
A.5B.6C.7D.8
【答案】A
【解析】
由三角形面积公式可求C'E的长,由相似三角形的性质可求解.
解:如图,过点C'作C'E⊥AB,C'G⊥AC,C'H⊥BC,并延长C'E交A'B'于点F,连接AC',BC',CC',
∵点C'与△ABC的内心重合,C'E⊥AB,C'G⊥AC,C'H⊥BC,
∴C'E=C'G=C'H,
∵S△ABC=S△AC'C+S△AC'B+S△BC'C,
∴AC×BC=AC×CC'+BA×C'E+BC×C'H
∴C'E=1,
∵将Rt△ABC平移到△A'B'C'的位置,
∴AB∥A'B',AB=A'B',A'C'=AC=4,B'C'=BC=3
∴C'F⊥A'B',A'B'=5,
∴A'C'×B'C'=A'B'×C'F,
∴C'F=,
∵AB∥A'B'
∴△C'MN∽△C'A'B',
∴C阴影部分=C△C'A'B'×=(5+3+4)×=5.
故选A.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=k1x+2与反比例函数y2=的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.
(1)k1= ,k2= ;
(2)根据函数图象可知,当y1>y2时,x的取值范围是 ;
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求直线OP的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,
(1)求抛物线的函数表达式;
(2)△BCD的面积等于△AOC的面积的时,求的值;
(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数与反比例函数的图象交于两点,其中点的坐标为(2,3).
(1)求一次函数与反比例函数的解析式:
(2)请根据图象直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线(a、b、c是常数, )与直线都经过轴上的一点P,且抛物线L的顶点Q在直线上,则称此直线与该抛物线L具有“一带一路”关系,此时,直线叫做抛物线L的“带线”,抛物线L叫做直线的“路线”.
(1)若直线与抛物线具有“一带一路”关系,求m、n的值.
(2)若某“路线”L的顶点在反比例函数的图象上,它的“带线” 的解析式为,求此路的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴交于点M.
(1)求此抛物线的解析式和对称轴;
(2)在此抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校随机抽取九年级部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,学校收集整理数据后,将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:
九年级接受调查的同学共有多少名,并补全条形统计图;
九年级共有500名学生,请你估计该校九年级听音乐减压的学生有多少名;
若喜欢“交流谈心”的5名同学中有三名男生和两名女生,心理老师想从5名同学中任选两名同学进行交流,请用画树状图或列表的方法求同时选出的两名同学都是女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com