【题目】已知,P是线段AB的中点,点C是线段AB的三等分点,线段CP的长为4 cm.
(1)求线段AB的长;
(2)若点D是线段AC的中点,求线段DP的长.
【答案】(1)24cm;(2)或
【解析】
(1)根据中点的概念以及三等分点的概念可得出结论;
(2)根据中点的概念以及三等分点的概念,分点C靠近点A或靠近点B两种情况讨论.
(1)如图,点E为另外一个三等分点,
∵P是线段AB的中点,
∴P也为CE的中点,又CP=4cm,
∴CE=2CP=8cm,
∵C、E是线段AB的三等分点,
∴AB=3CE=24cm.
(2)如图,当点C靠近点A时:
由(1)知:CP=4cm,AC=CE=EB=8 cm
点D是线段AC的中点,
∴
∴
如图,当点C靠近点B时:
∵点C是线段AB的三等分点,点D是线段AC的中点,
∴AD=DC=CB=8 cm
∵P是线段AB的中点,∴P也为DC的中点,
∴
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD与四边形CEFG是两个边长分别为a,b的正方形.
(1)用含a,b的代数式表示三角形BGF的面积;(2)当,时,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE= ;
(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;
(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.
(1)求经过B、E、C三点的抛物线的解析式;
(2)若点P为线段FG上一个动点(与F、G不重合),当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,请求出此时点P的坐标;
(3)若点P为直线FG上一个动点,Q为抛物线上任一点,抛物线的顶点为N,探究以P、Q、M、N为顶点的四边形能否成为平行四边形?若能,请直接写出点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为( )
A. (﹣1,2) B. (,2) C. (3﹣,2) D. (﹣2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形OABC中,已知点A、C两点的坐标为A (,),C (2,0).
(1)求点B的坐标.
(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.
(3)求平行四边形OABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,在射线AN上取一点B,使,过点作于点C,点D是线段AB上的一个动点,E是BC边上一点,且,设AD=x cm,BE=y cm,探究函数y随自变量x的变化而变化的规律.
(1)取指定点作图.根据下面表格预填结果,先通过作图确定AD=2cm时,点E的位置,测量BE的长度。
①根据题意,在答题卡上补全图形;
②把表格补充完整:通过取点、画图、测量,得到了与的几组对应值,如下表:
2 | 3 | ||||||
2.9 | 3.4 | 3.3 | 2.6 | 1.6 | 0 |
(说明:补全表格时相关数值保留一位小数)
③建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(2)结合画出的函数图象,解决问题:当时,的取值约为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点为直线上一点,过点作射线,使将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.
(1)将图1中的三角板绕点按每秒的速度沿顺时针方向旋转,使落在上.在旋转的过程中,假如第秒时,、、三条射线构成的角中有两个角相等,求此时的值为多少?
(2)将图1中的三角板绕点顺时针旋转(如图2),使在的内部,请探究:与之间的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com